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Abstract—Learning accurate representations of robot models 

remains a challenging problem, and is typically approached 
though large, system-specific feature sets. This method inherently 
introduces practical shortcomings, as interpretability and 
transferability of the learned model typically decreases as more 
features are introduced into the learning framework in order to 
handle increasing task complexity. In this work, we examine the 
problem of developing transferable learned models for dexterous 
manipulation that are able to accurately predict the behavior of 
physically distinct systems without retraining. We introduce the 
notion of learning from visually-extracted grasp mechanics-based 
features, which are formulated by combining geometrically-
inspired, analytical representations of the gripper into the feature 
set to more holistically represent the state of varied systems 
performing manipulation. We characterize the added utility of 
using such features through simulation and incorporate them into 
a classifier to predict specific phenomena, or modes of 
manipulation, that occur during prehensile within-hand 
movement. Four modes of manipulation—normal  (rolling 
contact), drop, stuck, and sliding—are defined, collected 
physically, and trained via a self-supervised learning approach. 
The classifier is first trained on a single sensorless underactuated 
hand variant for all four modes. We then investigate the 
transferability of the learned classifier on 5 different planar 
gripper variants—analyzing applicability of this approach with 
both online and offline evaluation. 
 

Index Terms—Dexterous Manipulation, Generalized Learning, 
Compliant Joint/Mechanism, Learning and Adaptive Systems 

I. INTRODUCTION 
EVELOPING robots capable of performing tasks in 

human-made, unstructured environments has remained an 
overarching research question in robotics for several decades. 
An important building block to this question is addressing the 
development of dexterous, within-hand manipulation (WIHM) 
capabilities for robotic hands. Dexterous manipulation is often 
characterized as the skillful, coordinated use of an end effector 
to reposition or reorient an object with respect to the hand frame 
[1]. An example of this ability includes the task of removing a 
key from a pocket, reorienting, and inserting into a lock. In this 

task, not only does WIHM enable repositioning and 
reorientation of the key without re-grasping or large whole-arm 
motions, it also allows the robot to avoid undesired system 
conditions, such as diverting away from joint singularities, 
while attempting to repose the key [2]. WIHM capabilities are 
especially advantageous for more capable service/home 
robots—which would be required to perform a variety of daily 
activities, such as folding clothes or feeding humans [3], [4].  
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Fig. 1. Geometric features can be extracted visually during 
manipulation with a priori knowledge of the fingertip geometry, object 
geometry, and the number of finger links. (Top) A pivot-flexure finger 
manipulates a pear-shaped object with rolling contacts (Mode: 
Normal). (Bottom) A three-link pivot finger manipulates a rectangular 
object until sliding occurs along the left finger (Mode:  Sliding). 
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Practical implementation of precision WIHM remains a 
major challenge as coordinated finger movements with rigid, 
high degree-of-freedom hands requires accurate hand-object 
models, accurate parameter estimations of the environment, and 
advanced control schemas, which may be impossible to derive 
or estimate. An alternative to WIHM with fully actuated hands 
has been through the use of soft, compliant, or underactuated 
grippers that are able to passively adapt to their environment. 
While this ability enables grippers to more easily handle 
sensing and perception uncertainty [5], it also introduces 
difficulties in modeling—the configuration of the hand is 
dependent on fingertip forces, joint stiffnesses, and contact 
locations, which may be impossible to accurately measure.  

 Due to analytical modeling difficulties, machine learning 
has been introduced into manipulation for both, fully-actuated 
and underactuated hands. Such approaches are able to 
intrinsically estimate parameters, e.g. kinetic model parameters 
or joint stiffness ratios, that can be difficult or impossible to 
model via human intervention. While these approaches can be 
fairly successful, they often rely on large, unstructured feature 
sets for training, e.g. camera or tactile array inputs [6]. In this 
approach, little intuition is provided by the learned model as to 
what characteristics of the system are most valuable for the task.  

In this work, we address this drawback by utilizing grounded, 
mechanics-based features that are able to generalize to different 
system variants. Assuming quasistatic motion of both the hand 
and the object, purely geometric representations—including 
finger manipulability measures, grasp quality measures, and 
hand-object manipulability measures—constitute as elemental, 
generalized properties of the hand-object system (Fig. 1). We 
investigate how these features allow trained models to transfer 
more successfully than traditional joint-based features. We use 
these features to distinguish between four possible 
manipulation classes for fingertip-based, prehensile 
manipulation; namely, normal (rolling contact), drop, stuck, 

and sliding. These classes, coined as modes of manipulation for 
this work, can be predicted through a self-supervised learning 
approach—which would enable the user to either trigger or 
avoid modes for desired object movement (Fig. 2), as in [7], [8]. 

The approach of using mechanics-based features is 
particularly advantageous for generalizing models among a 
task. Due to reliance on the underlying mechanics of the 
problem, a single classifier can be self-supervised and trained 
on one gripper variant and then transferred to another similar 
but distinct variant without retraining or data adaptation. We 
theoretically explore this concept and show the bounds by 
which hand parameters can change before mode distributions 
of the features become distinct between variants. We also test 
this experimentally by using estimated Cartesian motion 
models to randomly manipulate different objects, and self-
tagging each of the modes when they occur. A classifier is 
trained offline using a single gripper variant, and we show the 
transferability of the learned model for 5 different, asymmetric 
hands.  

This manuscript extends our preliminary conference work 
[9] in several ways. Specifically, we discuss in detail each of 
the grasp mechanics-based features and their generalizability to 
different systems. Moreover, we present the mathematics 
required for an in-depth simulation of underactuated hands. 
With this simulation, we show the extended utility of grasp 
mechanics-based features, providing bounds by which a single 
hand’s model is able to generalize to other gripper variants, 
providing justification for our approach. Finally, this work 
provides a substantial increase in experimentation and 
analysis—both online and offline—for further validation.  

II. RELATED WORK 
In this section, we present traditional methods to modeling 

within-hand manipulation. Following, we cover recent 
approaches to learning manipulation and this method’s 
associated drawbacks, which motivates this work.  

A. Within-hand Manipulation 
For several decades, a great deal of research in robot 

manipulation has focused on explicitly modeling physical 
interactions that occur between robots and objects in complex, 
unstructured environments—from fundamentals of interactions 
such as pushing [10], to object interactions in highly dynamic 
and unconstrained environments. The study of these 
interactions is especially entailed in the application of WIHM, 
that requires coordinated finger movements while maintaining 
predefined contact scenarios. Since Okada first used inverse 
kinematics to plan joint trajectories for manipulator motion 
almost four decades ago [11], nearly every aspect of robot 
manipulation has been treated with great mathematical rigor in 
the pursuit of creating more capable robots [12]–[17]. This 
great volume of work elucidates many powerful relationships 
between finger joint motion and object motion via classic 
formulations such as contact curvatures, the Grasp Matrix, the 
Hand Jacobian, and the Hand-Object Jacobian. 

Leveraging these mechanical representations and assuming 
that specific contact models are warranted by the task, object 

 

 
 
 
 

Fig. 2. By predicting modes of manipulation before or at the moment 
they occur, the user is able to transition between modes (trigger or 
avoid) for desired manipulation. Modes are typically detected when 
the hand-object system is in a similar configuration as those shown. 
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motion models can be devised. The point contact with friction 
model, denoting that forces can be exerted in any direction 
within the friction cone, is often used and has led to the 
formulation of the Hand-Object Jacobian [18], which represents 
the transition map from joint movement into object motion. The 
work in [17] assumed stationary point contacts without rolling 
or sliding, virtually fixing the location of the contact frame on 
the finger to that on the object. Rolling has been taken into 
account as well [19]–[21], which requires geometric knowledge 
of the fingerpad and the contact to maintain precision. More 
advanced contact models, such as those for soft contacts [22], 
have also been introduced. Generally, all contact models are 
highly subject to material parameters, such as durometer and 
texture of the contact, that can change with environmental 
conditions (humidity or dust). Therefore, parametric estimation 
often necessitates on-board sensors, which are expensive, 
inaccurate, and complicate the design and control of the hand. 

The addition of compliance to the system through either 
hardware (soft, underactuated) or software (impedance control 
[23], soft synergies [24]) can help mitigate uncertainties that 
would otherwise lead to task failure. Both approaches introduce 
passive adaptability to the system, which permits a grasp to be 
maintained under reasonable external disturbances [25]. For 
example, in [26], this concept is leveraged for in-hand 
manipulation with simple control over just two degrees of 
actuation. Though, due to this compliance, precision 
manipulation remains difficult to accurately model or simulate, 
since the output space is of higher dimension than the input 
space [21], [27], [28].  

Two promising approaches to planar precision manipulation 
with underactuated hands have been introduced in our previous 
works by either using rough gripper models and an MPC visual 
servoing framework [29], or learning a state transition model of 
the gripper [30]. Although object precision was increased in 
both works, manipulation was focused in a specific region of 
the workspace. Moreover, the models learned were system 
specific and transfer was not addressed in either of these works 
providing inspiration for this manuscript—to learn transferrable 
representations of the gripper to aid in generalizing 
manipulation.  

B. Learning Manipulation Policies 
Learning control policies for dexterous manipulation is a 

well-studied research area when analytical representations are 
unavailable. This approach enables the robot to formulate its 
own representative model without hand-tuned, human 
intervention. Reinforcement Learning (RL) has shown to be a 
promising approach to this problem, especially for compliant 
systems, e.g. [31]. A major drawback to RL is the amount of 
data required to train the model. As presented in [6], over “a 
hundred years” of object manipulation was collected in 
simulation for WIHM of a cube. Though some approaches have 
addressed this caveat, e.g. by learning from online videos [32] 
or guiding the manipulation strategies by combining imitation 
learning of a human expert [33], [34], simulators, which are 
often not representative of real-world contact scenarios, are 
normally required to develop these learned models. In addition 

to these drawbacks, the input dimensionality used in multilayer 
perceptrons can be extremely large and will therefore lack 
interpretability and generalizability for a more enlightened 
approach to manipulation. For example, in [6], the input vector 
was a video stream from 3 cameras (thus, 3 x 640 x 480 = 
921,600 pixels/features). 

Aside from learning the entire system model for precision 
manipulation, detecting object phenomena such as sliding has 
also been reported in the literature. Previous works have learned 
from tactile “images” to detect the coefficient of friction at the 
point of incipient slippage [35], [36] and can therefore plan 
trajectories to avoid slip conditions [37], [38]. Unfortunately, 
due to the nature of this approach, prior exploration with the 
object is necessary, which may be infeasible for time-sensitive 
or mission critical tasks. By leveraging mechanics, slip 
conditions can also be avoided by ensuring reasonable grasp 
quality measure values during manipulation [39]. Nevertheless, 
compliant, soft, and underactuated hands are often not equipped 
with the sensing modalities required to detect such phenomena, 
providing inspiration and purpose for this work.  

III. GRASP MECHANICS-BASED FEATURES 
In this work, we leverage traditional mechanical models of 

manipulation to define features generalizable to different hand 
variants. Specifically, we extract the most common 
manipulability measures associated with the hand, the object, 
and the contacts: a Jacobian-based manipulation measure, a 
penalized Jacobian-based manipulability measure, the singular 
values of the Grasp Matrix, the singular values of the Hand-
Object Jacobian, and the contact curvatures. By learning from 
these features, which are grounded geometrically to the state of 
the gripper, we are able to analyze which traditional grasp-
mechanics measures are able to best represent the hand-object 
state. A summary of this manuscript’s nomenclature is 

TABLE I 
NOMENCLATURE 

Symbol Description 

General: 
𝑞𝑞 Particular hand configuration: 𝑞𝑞 ∈ ℝ4 𝑜𝑜𝑜𝑜 ℝ5 
𝑎𝑎 Configuration of the actuators: 𝑎𝑎 ∈ ℝ2 

𝐵𝐵,𝐹𝐹,𝑂𝑂 Pose of the base frame, finger frame, or object frame, 
respectively: 𝐵𝐵,𝐹𝐹,𝑂𝑂 ∈ 𝑆𝑆𝑆𝑆(2) 

𝑣𝑣 Velocity = (𝑣𝑣𝑥𝑥,𝑣𝑣𝑦𝑦 ,𝑣𝑣𝜃𝜃) ∈ 𝑠𝑠𝑠𝑠(2) of the object w.r.t. 𝐵𝐵 

𝐽𝐽𝑖𝑖 Jacobian of the 𝑖𝑖th finger of the hand: left finger is index 1 
and right finger is index 2. 𝐽𝐽ℎ is the Hand Jacobian. 

𝐺𝐺 Grasp Matrix: 𝐺𝐺 ∈ ℝ3×4 in the two-finger, planar case 
𝐻𝐻 Hand-Object Jacobian: 𝐻𝐻 ∈ ℝ3×4 𝑜𝑜𝑜𝑜 ℝ3×5 

𝒫𝒫 Object point cloud (𝒫𝒫𝑜𝑜 ∈ ℝ2×𝑁𝑁) w.r.t. 𝑂𝑂 or fingerpad 
point cloud (𝒫𝒫𝑓𝑓 ∈ ℝ2×𝑁𝑁) w.r.t. 𝐹𝐹 

Grasp Mechanics-based Features: 

𝓋𝓋 Cartesian velocity reference of the object: 𝓋𝓋𝑥𝑥 in the x-
direction and 𝓋𝓋𝑦𝑦 in the y-direction. 

𝓌𝓌𝑖𝑖 Manipulability measure of the 𝑖𝑖th finger: 𝓌𝓌𝑝𝑝
𝑖𝑖 is the 

penalized manipulability measure 
ℊ Singular values (SV) of  𝐺𝐺: ℊ𝑚𝑚𝑚𝑚𝑥𝑥 max SV, ℊ𝑚𝑚𝑖𝑖𝑚𝑚 min SV 
𝒽𝒽 Singular values of 𝐻𝐻: 𝒽𝒽𝑚𝑚𝑚𝑚𝑥𝑥 max SV, 𝒽𝒽𝑚𝑚𝑖𝑖𝑚𝑚 min SV 

𝒸𝒸𝑖𝑖 
Curvature of the contact point on the 𝑖𝑖th finger: 𝒸𝒸𝑓𝑓𝑖𝑖  is 
fingerpad curvature and 𝒸𝒸𝑜𝑜𝑖𝑖  is object curvature 
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presented in Table I. For the remainder of this manuscript, we 
will refer to the left finger as index 1 and the right as index 2. 

For the following formulations, let’s assume the planar 
manipulator has 𝑛𝑛 serial-link fingers, each having 𝑗𝑗𝑖𝑖  joints per 
finger. The configuration of a single finger, 𝑞𝑞𝑖𝑖 ∈ ℝ𝑗𝑗𝑖𝑖 , represents 
its current joint angles. Therefore, the hand configuration, 𝑞𝑞 ∈
ℝ∑ 𝑗𝑗𝑖𝑖𝑛𝑛

𝑖𝑖=1  , fully describes the state of the hand and denotes the 
angles associated with each of the joints (Fig. 1). In traditional 
modeling for grasping and manipulation, the Hand Jacobian,  
sometimes referred to as the Manipulator Jacobian, is denoted 
as 𝐽𝐽ℎ = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑎𝑎𝑏𝑏(𝐽𝐽1, … , 𝐽𝐽𝑘𝑘), where 𝐽𝐽𝑖𝑖 is the Jacobian for a 
single, serial-link finger. It is important to note that in 
underactuated or compliant systems, the configuration of the 
gripper cannot be fully described by the state of the actuators, 
𝑎𝑎. That is, it is likely the 𝑏𝑏𝑖𝑖𝑑𝑑(𝑎𝑎) < 𝑏𝑏𝑖𝑖𝑑𝑑 (𝑞𝑞), so we must 
properly denote their differences.  

A. Finger Manipulability Measures 
The current configuration of a serial-link finger determines 

its manipulability, i.e. how the tip of the finger is able to move 
given an actuation input about each of the joints, and is 
represented by the finger Jacobian. This representation is a 
function from joint input velocity to fingertip velocity:  

 
 �̇�𝑦𝑖𝑖 = 𝐽𝐽𝑖𝑖�̇�𝑞𝑖𝑖 (1) 
 

where �̇�𝑦𝑖𝑖 ∈ ℝ2 in the planar case (�̇�𝑦𝑖𝑖 ∈ ℝ3 in the spatial case), 
𝐽𝐽𝑖𝑖 ∈ ℝ2×𝑗𝑗𝑖𝑖  in the planar case (𝐽𝐽𝑖𝑖 ∈ ℝ3×𝑗𝑗𝑖𝑖in the spatial case), and 
�̇�𝑞𝑖𝑖 ∈ ℝ𝑗𝑗𝑖𝑖 . In this work, we utilize both, two-link and three-link 
serial manipulators in the plane. From this, we can formulate 
the two finger Jacobians: 
 

 Two-link finger:  
 𝐽𝐽𝑖𝑖(𝑞𝑞𝑖𝑖) =  �−𝒥𝒥𝐴𝐴 − 𝒥𝒥𝐵𝐵 −𝒥𝒥𝐵𝐵

𝒥𝒥𝐷𝐷 + 𝒥𝒥𝐸𝐸 𝒥𝒥𝐸𝐸
� (2) 

 Three-link finger:  
 𝐽𝐽𝑖𝑖(𝑞𝑞𝑖𝑖) =  �−𝒥𝒥𝐴𝐴 − 𝒥𝒥𝐵𝐵 − 𝒥𝒥𝐶𝐶 −𝒥𝒥𝐵𝐵 − 𝒥𝒥𝐶𝐶 −𝒥𝒥𝐶𝐶

𝒥𝒥𝐷𝐷 + 𝒥𝒥𝐸𝐸 + 𝒥𝒥𝐹𝐹 𝒥𝒥𝐸𝐸 + 𝒥𝒥𝐹𝐹 𝒥𝒥𝐹𝐹
� (3) 

   
 𝒥𝒥𝐴𝐴 =  𝑏𝑏1i sin (𝑞𝑞1𝑖𝑖) 

𝒥𝒥𝐵𝐵 = 𝑏𝑏2i sin (𝑞𝑞1𝑖𝑖 + 𝑞𝑞2𝑖𝑖 ) 

𝒥𝒥𝐶𝐶 = 𝑏𝑏3i sin (𝑞𝑞1𝑖𝑖 + 𝑞𝑞2𝑖𝑖 + 𝑞𝑞3𝑖𝑖 )  

𝒥𝒥𝐷𝐷 = 𝑏𝑏1i cos (𝑞𝑞1𝑖𝑖 ) 

𝒥𝒥𝐸𝐸 = 𝑏𝑏2i cos (𝑞𝑞1𝑖𝑖 + 𝑞𝑞2𝑖𝑖 ) 

𝒥𝒥𝐹𝐹 = 𝑏𝑏3i cos (𝑞𝑞1𝑖𝑖 + 𝑞𝑞2𝑖𝑖 + 𝑞𝑞3𝑖𝑖 )  

 

 
where, more specifically 𝑞𝑞𝑖𝑖 = �𝑞𝑞1𝑖𝑖 , … , 𝑞𝑞𝑗𝑗𝑖𝑖�

𝑇𝑇 , which represents 
the joint configuration for a single finger, 𝑖𝑖. From this Jacobian, 
we can represent its manipulability measure, 𝓌𝓌𝑖𝑖 ,  for each 
finger in the hand [40]: 

 𝓌𝓌𝑖𝑖 =  �det (𝐽𝐽𝑖𝑖 ∗ 𝑡𝑡𝑜𝑜𝑎𝑎𝑛𝑛𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠(𝐽𝐽𝑖𝑖)) (4) 
 
As 𝓌𝓌𝑖𝑖  approaches zero, this is indicative of the individual 

mechanism nearing a singularity—which effectively limits the 
ability to instantaneously move in any direction.  

A penalized manipulability measure is also proposed, as it 
better encapsulates limits of a finger’s workspace by 
incorporating a priori knowledge of the hard stops, i.e. a finger 
link cannot rotate fully around a joint, but typically has a range 
in which it can operate [41]. Fundamentally, this measure 
enables the mechanism to determine where mechanical 
constraints are located and to stay well within the workspace. 
The penalized manipulability measure, 𝓌𝓌𝑝𝑝

𝑖𝑖 , is the product of a 
penalty value, 𝜋𝜋𝑖𝑖(𝑞𝑞𝑖𝑖) and the manipulability measure from (4). 

 
 

𝜋𝜋𝑖𝑖(𝑞𝑞𝑖𝑖) = 1 − 𝑠𝑠
−𝜅𝜅∏

�𝑞𝑞𝑗𝑗
𝑖𝑖−𝑙𝑙𝑗𝑗

𝑖𝑖−��𝑙𝑙𝑗𝑗
𝑖𝑖+−𝑞𝑞𝑗𝑗

𝑖𝑖�

�𝑙𝑙𝑗𝑗
𝑖𝑖+−𝑙𝑙𝑗𝑗

𝑖𝑖−�
2𝑗𝑗

 
(5) 

 
Here, 𝑏𝑏𝑗𝑗𝑖𝑖+ and 𝑏𝑏𝑗𝑗𝑖𝑖− represent the upper and lower bounds on joint 
𝑗𝑗, respectively, and 𝜅𝜅 is a weighting factor that is tuned to 
determine how quickly manipulability drops off near the joint 
limits. This penalty function is calculated for each finger, and 
is applied to determine 𝓌𝓌𝑝𝑝

𝑖𝑖 , 
 

 𝓌𝓌𝑝𝑝
𝑖𝑖 = 𝜋𝜋𝑖𝑖𝓌𝓌𝑖𝑖  (6) 

 
 The two finger manipulability measures, 𝓌𝓌𝑖𝑖  and 𝓌𝓌𝑝𝑝

𝑖𝑖 , are 
used as mechanics-based features for mode detection in this 
work. We provide an illustration of these measures in Fig. 3, 
where it is important to note the similarities of the data 
distributions as properties of the fingers change.  

B. Grasp Quality Measures 
A grasp quality measure based on the Grasp Matrix is utilized 

for representing the manipulability of the object, given the 
current contact configuration. The Grasp Matrix is commonly 
leveraged as a representation for relating the velocity of the 
contact to the velocity of the object. Determined by the contact 
normal directions, in addition to the relative location of the 
object’s fixed frame, the Grasp Matrix is formulated strictly by 
the geometry of the object and the position of the contacts—
force sensing is not required. The model has a desirable quality 
that, even though the upper bound of its singular values is 
unbounded, the minimum singular value has a lower bound of 
zero regardless of the dimensions of the object. This occurs 
when two or more contact normals are collinear, parallel 
vectors with respect to the object frame, 𝑂𝑂. This quality can be 
a be useful indicator for when the object is likely to drop. A 
metric based off of singular values of the Grasp Matrix is 
therefore invariant across systems of different dimensions.  
 The Grasp Matrix, 𝐺𝐺, in the velocity domain represents a map 
from external contact velocities, �̇�𝑧, to object frame velocity, 𝑣𝑣. 
We can represent this as: 

 
 �̇�𝑧 = 𝐺𝐺𝑇𝑇𝑣𝑣 (7) 
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The shape of 𝐺𝐺 is not absolute as it depends on the contact 

model used for manipulation. In the planar case with a point 
contact model and 𝑐𝑐 number of contacts, �̇�𝑧 ∈ ℝ2𝑐𝑐, 𝑣𝑣 ∈ 𝑠𝑠𝑠𝑠(2), 
thus 𝐺𝐺 ∈ ℝ3×2𝑐𝑐. Similarly, for the spatial case not covered in 
this work, �̇�𝑧 ∈ ℝ3𝑐𝑐, 𝑣𝑣 ∈ 𝑠𝑠𝑠𝑠(3), and 𝐺𝐺 ∈ ℝ6×3𝑐𝑐. In this work, we 
will assume a point contact with friction model, forming the 
basis, 𝑏𝑏𝑐𝑐𝑖𝑖 , which states that a force can be applied along the 𝑥𝑥- 
and 𝑦𝑦-axes of the contact accordingly so long as it is within the 
friction cone. Additionally, we must calculate the vector, 𝑡𝑡𝑐𝑐𝑖𝑖 , 
denoting the positional relationship between the contact frame, 
𝑐𝑐𝑖𝑖, for the 𝑖𝑖th finger and the object frame, 𝑂𝑂. The rotational 
relationship, 𝜃𝜃𝛿𝛿𝑖𝑖 , between the contact frame, 𝑐𝑐𝑖𝑖, and 𝑂𝑂 is also 
computed. For the two-finger, two-contact case in this work: 

 
 

𝑏𝑏𝑐𝑐𝑖𝑖 =  �
1 0
0 1
0 0

� (8) 

 
𝑅𝑅𝑐𝑐𝑖𝑖 =  �

cos (𝜃𝜃𝛿𝛿𝑖𝑖) −sin (𝜃𝜃𝛿𝛿𝑖𝑖)
sin (𝜃𝜃𝛿𝛿𝑖𝑖) cos (𝜃𝜃𝛿𝛿𝑖𝑖)

� (9) 

 𝑡𝑡𝑐𝑐𝑖𝑖 = �
𝑡𝑡𝑐𝑐𝑖𝑖𝑥𝑥
𝑡𝑡𝑐𝑐𝑖𝑖𝑦𝑦� (10) 

 
where 𝜃𝜃𝛿𝛿𝑖𝑖 = 𝜃𝜃𝑐𝑐𝑖𝑖 − 𝜃𝜃𝑂𝑂, and 𝜃𝜃𝑐𝑐𝑖𝑖 , 𝜃𝜃𝑂𝑂 are the angle offsets of the 
𝑖𝑖th contact frame and the object frame, respectively. Finally, 
with these calculated for each contact, we can formulate the 
Grasp Matrix, 𝐺𝐺: 
 

 
𝐴𝐴𝑏𝑏𝑔𝑔

𝑜𝑜𝑐𝑐𝑖𝑖
−1
𝑇𝑇 = �

𝑅𝑅𝑐𝑐𝑖𝑖 0
[−𝑡𝑡𝑐𝑐𝑖𝑖𝑦𝑦 𝑡𝑡𝑐𝑐𝑖𝑖𝑥𝑥]𝑅𝑅𝑐𝑐𝑖𝑖 1� ∈ ℝ

3×3 (11) 

 𝐺𝐺 =  �𝐴𝐴𝑏𝑏𝑔𝑔𝑜𝑜𝑐𝑐1
−1
𝑇𝑇 𝑏𝑏𝑐𝑐1 𝐴𝐴𝑏𝑏𝑔𝑔𝑜𝑜𝑐𝑐2

−1
𝑇𝑇 𝑏𝑏𝑐𝑐2� ∈ ℝ3×4 (12) 

 
 From 𝐺𝐺 ∈ ℝ3×4, there exist three singular values that 
describe the state of the contacts with respect to the object. In 

our feature set, we will denote the maximum singular value as 
ℊ𝑚𝑚𝑚𝑚𝑥𝑥 and the minimum singular value  as ℊ𝑚𝑚𝑖𝑖𝑚𝑚. 

C. Hand-Object Manipulability Measure 
The Hand-Object Jacobian [18] is a map that describes the 

relationship between actuation input, �̇�𝑞, and object velocity, 𝑣𝑣. 
Although this cannot be directly utilized in underactuated 
hands, due to the inability to control each of the joints 
individually, i.e. 𝑏𝑏𝑖𝑖𝑑𝑑(𝑎𝑎) < 𝑏𝑏𝑖𝑖𝑑𝑑 (𝑞𝑞), it’s geometric 
representation of the hand-object system can provide insight as 
to where the object can move given the current hand 
configuration. This Hand-Object Jacobian, 𝐻𝐻, assumes a point 
contact with friction model and is formulated by combining the 
Grasp Matrix, 𝐺𝐺, and the Hand Jacobian, 𝐽𝐽ℎ. Let’s examine �̇�𝑦 ∈
ℝ2𝑘𝑘, or the vector of all fingertip velocities of the hand from 
(1). Let’s now also assume, that �̇�𝑦 = �̇�𝑧 ∈ ℝ2𝑘𝑘, the object contact 
velocities from (7). Assuming a point contact with friction 
model, this further suggests that the location of the contact does 
not move with respect to the object frame during manipulation, 
and virtually attaches the finger to the object. With this 
assumption, we combine (1) and (7), 
 

 𝑣𝑣 = (𝐺𝐺𝑇𝑇)+𝐽𝐽ℎ�̇�𝑞 = 𝐻𝐻�̇�𝑞 (13) 
 
where (𝐺𝐺𝑇𝑇)+ is the pseudo-inverse of the transposed Grasp 
Matrix. In the planar case with two-links and two contacts, 𝐻𝐻 ∈
ℝ3×4. Here, the singular values of 𝐻𝐻 represent how close the 
hand-object system is to a singular configuration, i.e. the ability 
for the object to move instantaneously in any direction. Similar 
to those used for 𝐺𝐺, we will use the maximum singular value, 
𝒽𝒽𝑚𝑚𝑚𝑚𝑥𝑥 , and the minimum singular value ,𝒽𝒽𝑚𝑚𝑖𝑖𝑚𝑚, as features.  

D. Curvature of Contact 
As described by Montana [42], the geometric conditions of 

contact are important as they enable differentiation between 
contact stability and spatial stability—necessary measures to 

 

 
 
 
 

Fig. 3. Free swing manipulability workspaces for both proposed manipulability measures. (Top) Free swing trajectories for three two-link planar 
fingers used in this work. (Bottom) Free swing trajectory of the three-link planar finger used in this work. Unlike the penalized manipulability 
measure, the standard manipulability measure does not account for joint hard stops.  
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track during manipulation. To this end, we propose extracting 
the local conditions of the contact point for both, the fingerpad 
and object.  

The object point cloud, 𝒫𝒫𝑜𝑜 , and fingerpad point cloud, 𝒫𝒫𝑓𝑓, as 
further described in Sec. V.C, are used for calculating the 
curvature at the contacts. Let’s require that the point clouds are 
contiguous; that is, neighboring indices indicate neighboring 
points in the cloud. Given 𝒫𝒫𝑜𝑜(𝓅𝓅𝑜𝑜) and 𝒫𝒫𝑓𝑓�𝓅𝓅𝑓𝑓�, determined by 
the KD-Tree to be the two closest points to one another in 
separate clouds, we calculate the curvature of the contact by 
evaluating their relationship to neighbors at each contact point. 
The curvature is therefore equal to the reciprocal of the radius 
of the circle that fits three neighboring points in the same point 
cloud. For example, let’s calculate the curvature for the object. 
Given neighboring points on the object, 𝓅𝓅−𝑜𝑜 =  𝓅𝓅𝑜𝑜 − 1 and  
𝓅𝓅+𝑜𝑜 =  𝓅𝓅𝑜𝑜 + 1, we calculate the Euclidean distance between 
each of the three sets of points, (𝒫𝒫𝑜𝑜(𝓅𝓅𝑜𝑜),𝒫𝒫𝑜𝑜(𝓅𝓅+𝑜𝑜),𝒫𝒫𝑜𝑜(𝓅𝓅−𝑜𝑜)) 
providing distances 𝛽𝛽1, 𝛽𝛽2, and 𝛽𝛽3. Then,  

 
 

𝛽𝛽𝑠𝑠 =
𝛽𝛽1 + 𝛽𝛽2 + 𝛽𝛽3

2
 (14) 

 𝜆𝜆 =  �|𝛽𝛽𝑠𝑠(𝛽𝛽𝑠𝑠 − 𝛽𝛽1)(𝛽𝛽𝑠𝑠 − 𝛽𝛽2)(𝛽𝛽𝑠𝑠 − 𝛽𝛽3)| (15) 
 

𝒸𝒸𝑜𝑜𝑖𝑖 =
𝛽𝛽1𝛽𝛽2𝛽𝛽3

4𝜆𝜆
 (16) 

 
where  𝒸𝒸𝑜𝑜𝑖𝑖   from (16) is the curvature of the object at the 𝑖𝑖th 
contact point. We can similarly calculate the curvature of 
fingerpad at the  𝑖𝑖th contact point. These curvatures are included 
as mechanics-based features in this work to aid in determining 
object stability. 

IV. BOUNDING FEATURE GENERALIZABILITY 
The goal of this section is to investigate the bounds of which 

grasp mechanics-based features are able to better estimate the 
state of the hand-object system as physical parameters of the 
hand change, e.g. link lengths or spring ratios. We compare 
these bounds to a more traditional feature set used for 
learning—the joint or motor configuration of the robot. This is 
accomplished by modeling the mechanics of quasistatic, 
underactuated manipulation for a two-fingered hand. After 
modeling, we sequentially vary parameters of the hand-object 
system beyond that of its original symmetric configuration and 
run statistical analyses that indicate whether or not the features 
likely come from similar distributions between different hand 
variants. In order to maintain brevity and tractability of these 
results, this section will focus on studying solely finger 
manipulability measures, and will leave the additional features 
from Sec. III.B, III.C, and III.D to be discussed in Sec. VII. 
Physical characteristics of the hand are referenced in Fig. 4.A.  

A. Mechanics of Underactuated Manipulation 
Underactuated hands can be modeled in terms of energy with 

kinematic, frictional, and actuation constraints. That is, the 
configuration of the hand after actuation can be determined by 
solving for the minimum energy configuration objective, 

 
 𝑈𝑈 =

1
2
��𝑏𝑏𝑗𝑗𝑖𝑖�𝑞𝑞𝑗𝑗𝑖𝑖 − 𝑞𝑞𝑗𝑗0𝑖𝑖 �

2

𝑗𝑗𝑖𝑖

 (17) 

 
where 𝑞𝑞𝑗𝑗0𝑖𝑖  is the rest angle of each joint, 𝑞𝑞𝑗𝑗𝑖𝑖  is the current angle 
of each joint, 𝑏𝑏𝑗𝑗

𝑖𝑖 is the spring stiffness of each joint, and 𝑈𝑈 is the 
total elastic energy of the hand. This is formulated as an 
optimization problem, guided by both equality and inequality 
constraints. The quasistatic moment about the finger’s proximal 
joint, 𝑀𝑀1

𝑖𝑖 , on finger 𝑖𝑖 is created by both normal, 𝑓𝑓𝑁𝑁𝑖𝑖 , and 
tangential, 𝑓𝑓𝑇𝑇𝑖𝑖, contact forces, 
 

 𝑀𝑀1
𝑖𝑖 = 𝑢𝑢1,𝑒𝑒𝑓𝑓𝑓𝑓

𝑖𝑖 × 𝑓𝑓𝑁𝑁𝑖𝑖 + 𝑢𝑢1,𝑒𝑒𝑓𝑓𝑓𝑓
𝑖𝑖 × 𝑓𝑓𝑇𝑇𝑖𝑖 (18) 

 
where 𝑢𝑢1,𝑠𝑠𝑓𝑓𝑓𝑓

𝑖𝑖  is a vector from the proximal joint to the fingertip 
and × is the cross product. In this formulation, we assume that 
the normal force vector extends along the line joining both 
contact points to the object. We then define the moment at the 
finger’s distal joint, 𝑀𝑀2

𝑖𝑖 , created by contact forces, 
 

 𝑀𝑀2
𝑖𝑖 = 𝑢𝑢2,𝑒𝑒𝑓𝑓𝑓𝑓

𝑖𝑖 × 𝑓𝑓𝑁𝑁𝑖𝑖 + 𝑢𝑢2,𝑒𝑒𝑓𝑓𝑓𝑓
𝑖𝑖 × 𝑓𝑓𝑇𝑇𝑖𝑖 (19) 

 
where 𝑢𝑢2,𝑠𝑠𝑓𝑓𝑓𝑓

𝑖𝑖  is a vector from the distal joint to the fingertip. 
 Through this analytical modeling of 𝑀𝑀1

𝑖𝑖  and 𝑀𝑀2
𝑖𝑖 , we represent 

the moment balance at the finger’s proximal joint, 
 

 0 =  𝑇𝑇𝑖𝑖𝑜𝑜1𝑖𝑖 − 𝑏𝑏1𝑖𝑖𝛥𝛥𝑞𝑞1𝑖𝑖 + 𝑀𝑀1𝜏𝜏
𝑖𝑖  (20) 

 
where 𝑇𝑇𝑖𝑖 is the force created by the tendon, wrapped about a 
pulley of radius 𝑜𝑜1

𝑖𝑖 , 𝑏𝑏1
𝑖𝑖  is the proximal spring stiffness, 𝛥𝛥𝑞𝑞1𝑖𝑖 =

𝑞𝑞1𝑖𝑖 − 𝑞𝑞1,0
𝑖𝑖  is the proximal joint angle w.r.t. its rest orientation, 

and 𝑀𝑀1𝜏𝜏
𝑖𝑖  is the out of plane component of the proximal moment 

vector representing the magnitude of its torque. We similarly 
model the moment balance at the finger’s distal joint, 
 

 0 = 𝑇𝑇𝑖𝑖𝑜𝑜2
𝑖𝑖 − 𝑏𝑏2

𝑖𝑖 𝛥𝛥𝑞𝑞2
𝑖𝑖 + 𝑀𝑀2𝜏𝜏

𝑖𝑖  (21) 
 
where 𝛥𝛥𝑞𝑞2𝑖𝑖 = 𝑞𝑞2𝑖𝑖 − 𝑞𝑞2,0

𝑖𝑖  is the distal joint angle w.r.t. its rest 
orientation.  

In addition to moment balance constraints, the forces applied 
to the object must be in equilibrium with one another in order 
to maintain a stable grasp. That is,  

 

 
 
 
 

Fig. 4. (A) Annotation of hand parameters required for modeling 
underactuated manipulation mechanics. (B) Proximal and distal link 
lengths in simulation are changed by the same value, Δ𝑏𝑏, as to maintain 
unit length during simulation.   
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 0 = 𝑓𝑓𝑁𝑁𝑥𝑥1 +  𝑓𝑓𝑇𝑇𝑥𝑥1 +  𝑓𝑓𝑁𝑁𝑥𝑥2 +  𝑓𝑓𝑇𝑇𝑥𝑥2  (22) 
 0 = 𝑓𝑓𝑁𝑁𝑦𝑦1 +  𝑓𝑓𝑇𝑇𝑦𝑦1 +  𝑓𝑓𝑁𝑁𝑦𝑦2 +  𝑓𝑓𝑇𝑇𝑦𝑦2  (23) 

 
where 𝑓𝑓𝑁𝑁𝑥𝑥𝑖𝑖 , 𝑓𝑓𝑇𝑇𝑥𝑥𝑖𝑖 , 𝑓𝑓𝑁𝑁𝑦𝑦𝑖𝑖 , and 𝑓𝑓𝑇𝑇𝑦𝑦𝑖𝑖  are the x and y components of the 
normal and tangential forces, respectively. During 
manipulation, we must also satisfy kinematic loop closure,  
 

 0 = �𝑢𝑢 𝐵𝐵,𝑒𝑒𝑓𝑓𝑓𝑓
1 − 𝑢𝑢𝐵𝐵,𝑒𝑒𝑓𝑓𝑓𝑓

2 � − 𝑏𝑏𝑜𝑜 (24) 
 
where 𝑢𝑢𝐵𝐵,𝑒𝑒𝑓𝑓𝑓𝑓

1  is the position of the left fingertip w.r.t the base 
frame, 𝐵𝐵, and 𝑢𝑢𝐵𝐵,𝑒𝑒𝑓𝑓𝑓𝑓

2  is similarly the position of the right 
fingertip. Here, 𝑏𝑏𝑜𝑜 is the diameter of the object in contact with 
the fingertips. The last equality constraint represents the tendon 
or transmission constraint of underactuated mechanisms, 
dictating the coupled actuation between both joints,  
 

 0 = 𝑜𝑜1𝑖𝑖𝛥𝛥𝑞𝑞1𝑖𝑖 + 𝑜𝑜2𝑖𝑖𝛥𝛥𝑞𝑞2𝑖𝑖 − 𝑜𝑜𝑚𝑚𝑖𝑖𝛥𝛥𝑎𝑎𝑖𝑖 (25) 
   

where 𝑜𝑜𝑚𝑚𝑖𝑖  is the radius of the actuator pulley, and  Δ𝑎𝑎𝑖𝑖 is the 
difference between the resting and set angle of the actuator. 

Finally, an inequality constraint on each finger must also be 
satisfied such that contact normal and tangential forces satisfy 
Coulomb’s Law, 
 

 0 ≥  �𝑓𝑓𝑇𝑇𝑖𝑖� − 𝜇𝜇𝑜𝑜�𝑓𝑓𝑁𝑁𝑖𝑖� (26) 
 
where 𝜇𝜇𝑜𝑜 = 1 and is a conservative coefficient of friction 
estimate between rubber fingerpads and a solid object [43].  

From these constraints, which are guided by the mechanics 
of manipulation, we solve for the equilibrated joint 
configuration, 𝑞𝑞∗, and contact forces on each finger, 𝑓𝑓𝑁𝑁𝑖𝑖  and 𝑓𝑓𝑇𝑇𝑖𝑖, 
by solving the optimization problem,  
 

 (𝑞𝑞∗, 𝑓𝑓𝑁𝑁𝑖𝑖 , 𝑓𝑓𝑇𝑇𝑖𝑖) = argmin
𝑞𝑞

𝑈𝑈(𝑞𝑞) s.t. (18-26) (27) 
 

B. Mode Characterization in Simulation 
Following these formulations, we create a simulation 

modeling the motion of an object given an actuation input. 
Although our simulation can represent any underactuated two-
fingered hand-object variant, we decide to limit the parameter 
variation to just three characteristics in order to maintain 
tractability of the results. Specifically, we begin with a 
symmetric two-fingered hand (base variant) and sequentially 
change link lengths of the right finger, joint stiffnesses of the 
right finger, and object diameters, while keeping object contact 
locations constant. To avoid highly asymmetric cases, we 
choose to incorporate a variational term, Δ𝑏𝑏, where, if this term 
is added to one link, it is conversely subtracted from the other 
in order to maintain unit length of the finger (Fig. 4.B).  

We collect observations of the hand-object system when 
actuated and save two feature sets of its state. Particularly, these 
feature vectors consist of both types of finger manipulability 
measures in addition to the joint configurations of the hand. 
Concretely, we represent these as feature sets, 𝓈𝓈𝑚𝑚 =
(𝓌𝓌1,𝓌𝓌2,𝓌𝓌𝑝𝑝

2,𝓌𝓌𝑝𝑝
2) and 𝓈𝓈𝑞𝑞 = (𝑞𝑞11, 𝑞𝑞21, 𝑞𝑞12, 𝑞𝑞22) , which are then 

both tagged with a mode of manipulation, as determined by the 
results of the optimization process:  

1.) Drop - The hand is unable to provide force closure (i.e. 
when frictional fingertip contacts can equilibrate an 
external wrench perturbation) on an object of 20 grams, 
with gravity pointing into the manipulation plane. 

2.) Stuck - The object is no longer able to move in the 
direction dictated by actuation forces, creating an 
excessively large internal object force. This normally 
occurs at joint limits.  

3.) Sliding - The object exhibits sliding contacts when 
normal forces lie outside of the friction cone, as 
determined by 𝜇𝜇𝑜𝑜 and fingertip forces from (27). 

4.) Normal - The object is manipulable within the gripper’s 
workspace and modes 1-3 are not satisfied. 

We complete the simulation with a total of 867 hand-object 
variants. Each variant is actuated with a total of 900 distinct 
actuation pairs, and from each pair, the two feature vectors and 
mode of manipulation is recorded. Table II provides a summary 
of the simulated hand parameters.  

 
C. Bounding Feature Distributions by Statistical Testing 

The goal of this simulation is to provide general bounds by 
which grasp mechanics-based features are able to better 
generalize to different hands compared to joint-based features. 
More specifically, we approach this study by analyzing the data 
distributions of each of those feature sets with respect to the 
modes realized within those distributions, while varying hand-
object parameters. It further follows that if mode distributions 
do not greatly change between hand variants, we are likely able 
to better transfer learned models to other hands without retuning 
or retraining with new data.  

We perform this analysis by sequentially conducting a One-
Way Multivariate Analysis of Variance (MANOVA) test while 
increasing the difference between tested hand variants. Due to 
this sequential testing, we adjust the p-value required to reject 
the null hypothesis according to the Bonferroni correction 
method, starting with a value of 0.05 at the first variation of 
testing. This analysis is conducted as follows: given an object 
diameter and a right finger stiffness ratio, we select three hand 
variants—two with ±Δ𝑏𝑏, and one where Δ𝑏𝑏 is equal to zero (the 
base variant). We run MANOVA and according to the p-value, 
decide whether to reject the null hypothesis. For this type of 
statistical analysis, the null hypothesis tests whether the mode 
data from the three hand variants come from the same 
distributions. If the p-value is less than the Bonferroni adjusted 
threshold, we can reject the null hypothesis, meaning that there 
is sufficient evidence that the three hand variants do not come 
from the same data distributions. Performing these tests for all 
simulated hand-object variants, we compare the p-values of 
both the mechanics-based feature set, 𝓈𝓈𝑚𝑚, and the joint-based 
feature set, 𝓈𝓈𝑞𝑞. The results are presented in Fig. 5.  

TABLE II 
SIMULATION HAND PARAMETERS 

 

Symbol Value Symbol Value 
𝑏𝑏11 6cm Δ𝑏𝑏 [-2.4 – 2.4]cm (17 total) 
𝑏𝑏21 4cm 𝑏𝑏𝑜𝑜 [2.0 – 6.0]cm (17 total) 

𝑏𝑏21/𝑏𝑏11 2.0 𝑏𝑏22/𝑏𝑏12 [2, 2.5, 3] (3 total) 
𝑏𝑏𝑝𝑝 6cm 𝑜𝑜1𝑖𝑖/𝑜𝑜2𝑖𝑖  1.2 
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These results indicate the general bounds by which hand 
properties can change without varying the feature data 
distributions for each of the four modes of manipulation. More 
intuitively, Fig. 5 shows that, when starting at the base variant 
(solid black cell), the green cells are able to extend beyond that 
of the blue cells, where the green cells denote mechanics-based 
features and the blue cells denote both, position-based and 
mechanics-based features. Alternatively, red cells indicate hand 
variants where both null hypotheses were rejected, i.e. neither 
feature sets can sufficiently represent the base variant’s data.  

In fact, while keeping the object diameter around that of the 
base variant, and while holding the joint stiffness ratio static, Δ𝑏𝑏 
can change by ±1.8𝑐𝑐𝑑𝑑 without being statistically significant 
from the other data distributions (Cell A in Fig. 5). Notably, this 
variation cannot extend as drastically when the joint stiffness of 
the finger also changes. For instance, while still rejecting the 
position-based null hypothesis, we are only able to change Δ𝑏𝑏 
by ±0.6𝑐𝑐𝑑𝑑 comparatively, but this is when we increase the 
joint-stiffness ratio from 2 to 3 (Cell B). These two cells, 
interestingly, have similar p-values of 0.07 for 𝓈𝓈𝑚𝑚.  

This depiction serves to broadly represent the extent of the 
generalization bounds by analyzing various cells, like Cell C 
where we can reject both null hypotheses, and Cell D where we 
cannot reject either of the null hypotheses according to their p-
values. While this analysis is not definitive in that it does not 
necessarily directly transfer to more advanced non-linear 
learned regression models, it provides a general basis for 
understanding the added utility of the mechanics-based features 
from a statistical, data-distribution perspective, and we use this 
concept to motivate the continuation of this work.  

V. SELF-SUPERVISED TAGGING AND OBJECT RESET 
Beyond that of statistical evaluation, we seek to test the 

reliability of mechanics-based features empirically on a 
physical hand-object system to further analyze their 
applicability in real-world environments. We employ such 
experimentation on an underactuated Yale OpenHand Model 
T42, that is not equipped with joint encoders or tactile sensors 

at the fingertips. Due to this limitation, we must reformulate the 
definitions of the four modes of manipulation:  

1.) Drop - The hand-object configuration is in a state where 
the object is just about to drop and will drop shortly 
thereafter the commanded next actuation. 

2.) Stuck - The object is no longer able to move in the 
commanded actuation direction due to the hand-object 
configuration of the gripper, or the joint has reached a 
physical hard stop.   

3.) Sliding - The object exhibits a sliding contact with 
respect to the gripper’s distal link, i.e. mechanical rolling 
contact conditions are not satisfied.  

4.) Normal - The object is manipulable within the gripper’s 
workspace while maintaining a rolling contact, and 
modes 1-3 are not satisfied. 

A. Manipulation Primitives 
The Model T42 is underactuated and thus mechanically 

compliant, which enables passive reconfiguration post-contact 
and mitigates potential overconstraint as in a fully actuated 
hand. This compliance is advantageous for manipulation, as it 
enables the hand to reconfigure with noisy or imprecise control 
input. Though due to the nature of this mechanism, we cannot 
control all degrees of freedom of the object simultaneously, but 
a 2D submanifold of the object’s 3D configuration space. We 
employ manipulation primitives on the hand by generating an 
approximated Jacobian for an arbitrary object that relates to the 
velocity, 𝑣𝑣 = �𝑣𝑣𝑥𝑥 , 𝑣𝑣𝑦𝑦 , 𝑣𝑣𝜃𝜃�

𝑇𝑇 , of the object frame, 𝑂𝑂 ∈ 𝑆𝑆𝑆𝑆(2), to 
an actuation velocity, �̇�𝑎 = [�̇�𝑎1, �̇�𝑎2]𝑇𝑇, all with respect to the base 
frame, 𝐵𝐵 ∈ 𝑆𝑆𝑆𝑆(2) [44]. These primitive actuation sequences 
are estimates of the true Jacobian, and are selected according to 
the commanded Cartesian velocity reference in the x-direction, 
𝓋𝓋𝑥𝑥, and in the y-direction, 𝓋𝓋𝑦𝑦 (Fig. 6).  

B. Geometric Hand-Object Representation 
The geometric representation of a hand-object system can 

generally be extracted through various sensing modalities, e.g. 
cameras, tactile sensors, and joint encoders or IMUs. Albeit, not 

 

 
 
 
 

Fig. 5. MANOVA mode distribution testing of grasp mechanics-based features and position-based features. Green cells generally indicate the 
extended bounds by which mechanics-based features are able to transfer beyond that of their position-based counterpart (blue cells). Red cells 
indicate that neither of the feature sets likely share data distributions with the base variant (solid black cell). 
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all hands are equipped with such capabilities, as these types of 
sensors are generally not required for grasping with compliant 
hands. Thus, in this work, we focus on a vision-based approach 
with a fixed overhead camera (30Hz). During manipulation, the 
gripper configuration is tracked via ArUco markers attached to 
rigid links of the hand. A priori knowledge of the hand includes 
the number of finger links, the object geometry, and the 
geometry of the fingerpads. Principally, the camera pose w.r.t. 
the task can vary, as long as the markers are visible by the 
camera sensor such that the 6D pose of the attached markers 
can be tracked, e.g. offset from a robot wrist or on another robot. 

The state of the contacts is tracked, which subsequently 
allows the system to detect sliding during manipulation (Sec. 
V.C), by superimposing a 2D point cloud on both, the fingertips 
and the object, with respect to the marker frames attached to 
each. As the hand-object configuration changes during 
actuation, fundamentally changing characteristics about the 
grasp such as the effective link length, the superimposed 2D 
point clouds are tracked and analyzed. We solve for the contact 
location between the fingerpad and the object by querying a 
KD-Tree constructed with the object’s point cloud.  

C. Self-Supervised Mode Detection 
All four modes described in this work can be detected solely 

by an overhead camera that monitors the hand-object state 
during manipulation. This observation forms the basis of our 
self-supervised learning approach, where we can monitor 
features of the hand and of the object to determine and 
autonomously tag the current mode of  manipulation.  

1.) Detecting Drops: Drop detection is achieved by recording 
the state history of the object during manipulation. Simply, if 
the object marker is no longer within the manipulation plane, or 
the marker is currently absent from visual detection, the object 
is declared to be dropped. To reduce the potential for drop 
detection error, the history over the past 10 frames (0.3 seconds 
or two hand actions) is used to determine such occurrences, 
whereas this threshold is tuned heuristically during the 
experimentation setup. If this condition is satisfied, the system 

accesses the recorded state of the gripper 10 frames prior 
(directly before the object was dropped) and self-tags a drop 
observation. The object is then reset via an object reset system 
(further described in Sec. V.D) and manipulation continues. 

2.) Detecting Stuck: The object is considered stuck if it is no 
longer manipulable in the direction desired, which is 
determined by the current Cartesian velocity reference. 
Typically, this mode occurs when both fingers reach hard stops, 
limiting additional manipulation towards the palm (Fig. 2). 
Alternatively, stuck cases are also detected when the current 
configuration of the hand-object system is not able to 
reconfigure, limiting the movement of the object in the 
reference direction. When stuck is detected, the system self-tags 
an observation and the object is reset via an object reset system 
(Sec. V.D) for manipulation to continue.  

3.) Detecting Sliding: Sliding is the most difficult of the four 
modes to detect and is done so when kinematic rolling 
conditions cannot be satisfied. In order for one surface to be 
considered rolling on top of another, we choose to  track two of 
the three sliding constraints—the position of the point of 
contact and the velocity at the point of contact must be the same 
between the two bodies [45].  

Consider the scenario depicted in Fig. 7. Here, for the planar 
case,  𝑂𝑂 ∈ 𝑆𝑆𝑆𝑆(2) is the object frame and  𝐹𝐹 ∈ 𝑆𝑆𝑆𝑆(2) is the 
finger frame. To maintain generality, 𝐹𝐹 can be either finger 
frame, where the left and right finger frames are 𝐹𝐹1 and 𝐹𝐹2, 
respectively. By parameterizing the object and the fingerpad 
surface locally in 𝑂𝑂 and 𝐹𝐹, respectively, we effectively develop 
a point cloud for the object, 𝒫𝒫𝑜𝑜 ∈ ℝ𝑁𝑁× 2, and for the fingerpad, 
𝒫𝒫𝑓𝑓 ∈ ℝ𝑁𝑁× 2, where the interacting array index from the object 
point cloud is 𝓅𝓅𝑜𝑜 and the interacting array index for the 
fingerpad point cloud is 𝓅𝓅𝑓𝑓, as determined by the KD-Tree. The 
value for 𝑁𝑁 can be arbitrarily assigned such that points 
sufficiently cover the surface of the fingerpad and the object. 
For clarification, in the object point cloud, the location 
𝒫𝒫𝑜𝑜(𝓅𝓅𝑜𝑜) ∈ ℝ2 is in contact with point 𝒫𝒫𝑓𝑓�𝓅𝓅𝑓𝑓� ∈ ℝ2 from the 
fingerpad point cloud. Let’s consider that the location of 𝑂𝑂 is 
𝑥𝑥𝑜𝑜 = (𝑂𝑂𝑥𝑥,𝑂𝑂𝑦𝑦) ∈ ℝ2, and the location of the 𝐹𝐹 is 𝑥𝑥𝑓𝑓 = (𝐹𝐹𝑥𝑥,𝐹𝐹𝑦𝑦) ∈
ℝ2, both with respect to 𝐵𝐵. We denote the 2D rotation matrices 
𝑅𝑅𝑜𝑜 and 𝑅𝑅𝑓𝑓 for these respective frames. It follows the elementary 
consideration that the location of the contact point on the object 
(𝑥𝑥𝑜𝑜𝑐𝑐), that is with respect to the base frame, can be calculated as, 
 

 𝑥𝑥𝑜𝑜𝑐𝑐 = 𝑥𝑥𝑜𝑜 + 𝑅𝑅𝑜𝑜𝒫𝒫𝑜𝑜(𝓅𝓅𝑜𝑜) (27) 
 
and is similarly calculated for the fingerpad, denoted 𝑥𝑥𝑓𝑓𝑐𝑐. To 
satisfy the positional constraint of a rolling contact, within some 
user-defined threshold, 𝜖𝜖𝑝𝑝, the following must be valid: 
 

 𝑥𝑥𝑜𝑜𝑐𝑐 − 𝜖𝜖𝑝𝑝 ≤ 𝑥𝑥𝑓𝑓𝑐𝑐 ≤ 𝑥𝑥𝑜𝑜𝑐𝑐 + 𝜖𝜖𝑝𝑝 (28) 
 

The velocity constraint can be similarly constructed, where we 
can differentiate the two positions, 𝑥𝑥𝑜𝑜 and 𝑥𝑥𝑓𝑓, with respect to 
time to form �̇�𝑥𝑜𝑜 and �̇�𝑥𝑓𝑓. Since the body rotations are also 
functions of time, we must also differentiate body rotations of 
the object and fingertips to form velocity dependent rotation 
matrices,  �̇�𝑅𝑜𝑜  and �̇�𝑅𝑓𝑓 (see [45]). We can then solve for the 
velocity of the object contact about the base frame, �̇�𝑥𝑜𝑜𝑐𝑐, by,    

 
 
 
 

 
Fig. 6. Simple manipulation primitives enable planar motion within 
the workspace of a Yale OpenHand Model T42 gripper. These 
primitives enable the object to move up, down, left, or right depending 
on the Cartesian velocity reference, 𝓋𝓋.   
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 �̇�𝑥𝑜𝑜𝑐𝑐 = �̇�𝑥𝑜𝑜 + �̇�𝑅𝑜𝑜𝒫𝒫𝑜𝑜(𝓅𝓅𝑜𝑜) (29) 

 
We similarly calculate �̇�𝑥𝑓𝑓𝑐𝑐. Given the velocity threshold, 𝜖𝜖𝑣𝑣, we 
develop our final constraint: 
 

 �̇�𝑥𝑜𝑜𝑐𝑐 − 𝜖𝜖𝑣𝑣 ≤ �̇�𝑥𝑓𝑓𝑐𝑐 ≤ �̇�𝑥𝑜𝑜𝑐𝑐 + 𝜖𝜖𝑣𝑣 (30) 
 
Thresholds 𝜖𝜖𝑝𝑝 and 𝜖𝜖𝑣𝑣 are tuned heuristically according to the 
frequency of the camera and the accuracy of contact point 
estimation. If constraints (28) or (30) do not hold, it further 
implies that sliding occurred at the contact. Upon detection, the 
state of the system is self-tagged and manipulation continues 
without object reset.   

D. Standardizing Object Reset 
Collecting training data for dexterous manipulation is a 

labor-intensive process, as constant monitoring and manual 
intervention is frequently required to reset the system due to 
object drops during manipulation, or from other undesired 
system scenarios, e.g. actuators at torque limits. Moreover, 
during reset, it is unlikely that a human can completely 
standardize the initial grasp of the object, as a human placing 
the object within the grasp may often cause undesired 
deviations in the initial pose of the object before manipulation. 
In order to collect data in a self-supervised manner, we 
fabricated a system to autonomously and precisely reset the 
object as to standardize the initial grasp before manipulation.  

The automated reset system (Fig. 8) is comprised of an object 
crane and a stabilization beam with an affixed magnet on the 
end. For each of the objects tested, two magnets were affixed to 
opposite sides of the body and a lightweight fishing line was 
strung through the center. During the case of object drop or 
stuck, the crane raised and the stabilization arm was lowered to 
the reset position as to adhere to the object magnets.  Once the 
hand reacquired the grasp, which is standardized due to the 
positioning of the magnets, the stabilization beam lifts out of 
the way and the crane lowers. This provides slack to the 
connection between the crane and the object, and allows the 
hand to freely manipulate the object once again.  

VI. DATA COLLECTION  
We design gripper variants that are generally within the 

bounds identified in Sec. IV and test the applicability of 
mechanics-based features empirically, as to evaluate their 
robustness in physical environments. In a self-supervised 
manner, we autonomously collect and tag data on 6 gripper 
variants—one variant for training and five for testing. Once a 
grasp is acquired after reset, the object was manipulated with 
randomly selected Cartesian velocity references that operated 
for a period between 0.5 and 2.5 seconds. A “normal” 
observation was collected once no other mode was detected for 
more than 5 seconds. The self-supervised training data was first 
collected online, randomly selected as to adhere to the leveling 
of the data distributions, and was then trained and tested offline.  

 A total of six 3D Printed ABS objects of negligible weight 
(~20g) and differing geometries in the manipulation plane were 
created for experimentation (Fig. 9, 10). The center of each 
object contained a hole where the object crane was attached. 
For each object, magnets were affixed to opposite ends as to 
enable attachment to the stabilization beam for object reset. In 
the training data, only four objects were used. The other two 
objects, the oval and the pear, were used as novel test objects.  

Training data was collected with a single, symmetric Model 
T42 gripper variant (PL-PL) with Dynamixel RX-28 actuators. 
This naming convention signifies a “pivot-long proximal link, 
and a pivot-long distal link” configuration. From four objects, 
the two rectangles and the two circles, a total of 3500 modes 
were collected for training, with an equal mode distribution 
over each of the objects: 1000 normal, 1000 drop, 1000 stuck, 
and 500 sliding. Data was tagged and collected until the 
minimum for each mode was fulfilled. Afterward, overflow 
mode observations were selected randomly and excluded from 
the observation set. It is important to note sliding only occurs 
on objects with flat surfaces, i.e. the rectangular objects (Fig. 2, 
9). Therefore, the number of sliding points recorded for each 
variant was determined by which type of objects were used 
during collection. The training data workspace is presented in 
Fig. 11. We note that, generally, the mode regions are 
symmetric about the central axis of the gripper.   

Testing data was collected by equipping the hand with 5 

 
 
 
 
 

Fig. 8. An object crane and stabilization beam with affixed magnets 
accurately resets the object into the same configuration for each trial.  

 
Fig. 7. Sliding contacts are detected by verifying rolling contact 
constraints cannot be satisfied.   
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different finger configurations (Fig. 9). Variations incorporated 
changes to the link lengths, fingerpad curvatures, joint types, 
actuator models, and the number of links compared to the 
original PL-PL setup. The five variants included PL-PS and PS-
PL fingers (Dynamixel RX-28), and PS-FL, PL-PLsq, and PS-

PS-PS fingers (Dynamixel XM-430). Different joint stiffness 
ratios were observed for the PS-FL and PS-PS-PS setups 
compared to the other four variants. Additionally, the distal 
hard stop was 70° for the PS-FL variant, and the two hard stops 
were 60° for the PS-PS-PS variant, compared to all other 
variants with a distal hard stop of 90°. In each of the five 
variants used for testing, a total of 50 observations were 
collected for each mode-object pair. Since in most cases two 
objects were tested and only one object recorded any sliding, 
we recorded 100 normal, 100 drop, 100 stuck, and 50 sliding 
for each variant.  

More formally, during data collection we form a feature set, 
𝒮𝒮, comprised of features from Sec. III, and a class set, ℛ, while 
manipulating the objects. Denoted by,  
𝓈𝓈𝑚𝑚 = (𝓋𝓋𝑥𝑥 ,𝓋𝓋𝑦𝑦 , ,𝓌𝓌1 ,𝓌𝓌2,𝓌𝓌𝑝𝑝

2,𝓌𝓌𝑝𝑝
2,  …                                             

            …  ,ℊ𝑚𝑚𝑖𝑖𝑚𝑚 ,ℊ𝑚𝑚𝑚𝑚𝑥𝑥 ,𝒽𝒽𝑚𝑚𝑖𝑖𝑚𝑚 ,𝒽𝒽𝑚𝑚𝑚𝑚𝑥𝑥 , 𝒸𝒸𝑓𝑓1, 𝒸𝒸𝑜𝑜1, 𝒸𝒸𝑓𝑓2, 𝒸𝒸𝑜𝑜2) ∈ ℝ14    
an input feature, and 

𝓇𝓇𝑚𝑚 = (𝑑𝑑) ∈ {𝑛𝑛𝑜𝑜𝑜𝑜𝑑𝑑𝑎𝑎𝑏𝑏,𝑏𝑏𝑜𝑜𝑜𝑜𝑡𝑡, 𝑠𝑠𝑡𝑡𝑢𝑢𝑐𝑐𝑏𝑏, 𝑠𝑠𝑏𝑏𝑖𝑖𝑏𝑏𝑠𝑠}  
an output feature. The dataset is defined as, 

𝒮𝒮 = {𝓈𝓈𝑚𝑚}𝑚𝑚=1:𝑀𝑀        ℛ = {𝓇𝓇𝑚𝑚}𝑚𝑚=1:𝑀𝑀 
where its size, 𝑀𝑀, has the same number of normal, drop, stuck, 
and sliding cases for each gripper-object combination.   

 
 
 
 
 

Fig. 10. Six objects were used for testing and training. In the 
manipulation plane, object geometries are classified either as a circle, 
rectangle, oval, or pear.  

 

 
 
 
 

Fig. 9. Manipulation was performed on 6 different gripper variants. The base variant used in training, the symmetric PL-PL gripper, was 
evaluated with four different objects (small circle, large circle, small rectangle, and large rectangle). A total of 3500 points for training were 
collected for the four identified modes. The five test variants (PL-PS, PS-PL, PL-PLsq, PS-FL, and PS-PS-PS) then performed manipulation 
with two of the six test objects. Two novel objects were added in testing (medium oval and medium pear). During manipulation, 50 occurrences 
of each mode were collected for each gripper-object combination. A quarter is placed next to the objects for size reference. *Sliding only occurs 
with rectangular objects, therefore limiting the number of sliding cases.  
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VII. RESULTS  

A. Classifier Identification and Observation Reduction 
We were first interested in obtaining the best cross validation 

score given the training feature set, (𝒮𝒮𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 ∈
ℝ3500×14,ℛ𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 ∈ ℝ3500), of the symmetric PL-PL setup. In 
the self-supervised learning approach taken in this work, we 
evaluated three different predictive models: Random Forests 
(RF) [46], Support Vector Machines–linear kernel (SVM-l), 
and Support Vector Machines–radial kernel (SVM-r). We 
chose these three classifiers for their extended use in the 
robotics literature, and due to the fact that other classifiers, e.g. 
Neural Networks, likely need more data than what was 
collected in this work. To determine the best classifier for this 
data, we performed a five-fold cross validation on the training 
dataset using each classifier. As presented in Table II, the RF 
classifier performed the best, with an accuracy of 92.3% for all 
four modes, followed by 88.6% (SVM-r) and 85.4% (SVM-l). 
For the RF classifier, we calculate a classification accuracy of 
85%, 94%, 95%, and 86% for the normal, drop, stuck, and 
sliding cases, respectively. We note that drop and stuck cases 
are often classified with higher accuracy than sliding and 
normal cases. This quality is advantageous as it allows the 
system to more correctly avoid potentially hazardous modes to 
stay well within the workspace. For the remainder of this work, 
we evaluate classification with the RF classifier by building 50 
weak learners (shallow trees of depth 10) split according to a 
Gini impurity measure and averaging each tree’s prediction to 
determine mode classification.  

We were interested in how much data was required to 
maintain high classification accuracies via self-testing. Using 
all 14 features from 𝓈𝓈𝑚𝑚 and the RF classifier, we split the data 
into two sections: one with 2800 observations (training) and the 
other with 700 observations (testing), all while keeping the 
number of modes in each balanced. We continually reduce the 
number of data points in the training set by 100, removing 
observations randomly, and test on all 700 test observations. 
After training the classifier once observations were sequentially 
removed, we note that the classifier performs similarly with 

1200 observations as it does with 3500 observations (accuracy 
reduces by 3.4%). This 1.7:1 data ratio underscores that 
sufficient data was collected via self-supervision (Fig. 12).  

 

 
B. Classification Accuracy 

 For the remainder of our analysis, the RF classifier was 
trained with all 3500 data points using the symmetric PL-PL 
gripper variant. The particular test set,  (𝒮𝒮𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡 ,ℛ𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡), was 
changed according to which of the five gripper variants was 
being tested.  

Using all 14 features from 𝓈𝓈𝑚𝑚, each of the test grippers were 
evaluated individually (Fig. 13). The classification accuracy of 
the PL-PS and PL-PLsq variants were highest, with a 
classification accuracy of 90.6%. The second highest 
classification accuracy was realized in the PS-PL variant with 
an accuracy of 85.1%. As provided in the decision matrices in 
Fig. 13 (leftmost column), the PL-PS variant was able to 
classify normal, drop, and stuck with 84%, 97%, and 99% 
accuracy, respectively. Classification for sliding dropped to 
72%, where it had difficulty distinguishing from the normal 
mode. The PL-PLsq variant did not have sliding modes, since 
data was not collected with rectangular objects. Therefore, the 
lowest classification accuracy was observed with the drop mode 
(80% accuracy).  

This high misclassification of drop is interesting, as it is 
significantly lower than other variants (97%, 93%, 96%, 88%) 
with the same feature set. This can be largely attributed to the 
shifted workspace of the PL-PLsq gripper. As provided by the 
workspace plots in the rightmost column of Fig. 13, compared 
to the other variants, the modes detected for this variant are 
shifted to the left of the workspace. Additionally, many drop 
cases seem to occur in the middle of the workspace, where 
normal classification would typically be predicted. This artefact 
is due to the differing geometry of the fingerpad, as it was 
difficult for the finger to manipulate on the right side of the 
workspace since the “sharp” edge of the finger prevented a 
rolling contact to the tip of the finger.  

TABLE II 
FIVE-FOLD CROSS VALIDATION SCORES ON TRAINING SET 

Classifier Random Forests SVM - Linear SVM - Radial 

Score 92.3 ± 0.4% 85.4 ± 0% 88.6 ± 0% 

 
 
 

 
 
 
 

 
 

Fig. 11. Regions in the workspace where modes occur. Markers 
indicate the centroid of the object when a mode was detected.   

 
 
 
 

 

Fig. 12. Validation of training data size by reducing observations. 
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Fig. 13. (Left three columns) Confusion matrices for each gripper variant given differing feature sets (described in Sec. VII.C). (Right column) 
Object centroid position for modes detected within the workspace of each gripper variant. (Light Blue-Drop, Dark Blue-Normal, Yellow-Stuck, 
Red-Sliding)  
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Of the other gripper variants, the 3-link PS-PS-PS performed 

the worst with a total classification accuracy of 79.8%. In 
general, for all variants, predicting sliding was difficult as 
without tactile sensors and with differing friction within the 
joints of the fingers, the classifier struggles to determine forces 
applied at the contact point.  

C. Feature Reduction 
A benefit of the Random Forests classifier is its ability to 

inherently provide “feature importance measures”, or values 
that signify how much each feature contributed to the 
classification decision—providing intuition as to which 
features were most important during manipulation. In this work, 
we use a Gini impurity measure to calculate this importance 
metric, which is a standard often used in ensemble tree 
classifiers. It works as follows: once a random set of features 
are selected to determine a split, the Gini impurity represents 
the likelihood that an accurate classification is predicted given 
a random class from the distribution of labels. As these splits 
are calculated for each tree in the forest, the importance 
measure averages the Gini measures for each split and further 
signifies the feature’s importance, or more generally, how much 
“purity” they contributed to the forest. Feature importance 
measures are reported in Fig. 14, where we note that the largest 
contribution to classification success is attributed to  the 𝑦𝑦-axis 
Cartesian velocity reference (𝓋𝓋𝑦𝑦), finger manipulability 
measures (𝓌𝓌1,𝓌𝓌2), and the penalized finger manipulability 
measures (𝓌𝓌𝑝𝑝

1,𝓌𝓌𝑝𝑝
2).  

Using the feature importance measures, we define 3 feature 
sets (FS1, FS2, FS3) consisting of 14, 9, and 5 features, 
respectively, to further test classification (Table III). By testing 
accuracy with each feature set, we can provide greater intuition 
as to what features were most important.  The results from this 
analysis are reported in Table IV and Fig. 13. Note that the 
results from FS1 were previously described in Sec. VII.B.  

After feature reduction, some variants such as PS-PL (FS1: 
85.1%, FS2: 85.0%, FS3:84.4%) and the PL-PLsq (FS1: 90.6%, 
FS2: 89.2%, FS3: 87.6%) provided consistent classification 
scores even with the reduction of features. Interestingly, the PS-

PS-PS variant obtained nearly the same accuracy between FS1 
(79.8%) and FS2 (79.0%), even with the reduction of 5 total 
features (14 features to 9 features). The PS-FL sees a sharp 
decrease in classification from FS1 to FS2, but then maintains 
a similar classification accuracy for FS3. What is also 
interesting to note, while the overall accuracy of the PL-PLsq 
decreases, the drop accuracy increases with the reduction of 
features (FS1: 80%, FS2: 90%, FS3: 95%). 

 

 
 

 
 

Of the five gripper variants tested, the PL-PLsq maintained 
the best classification score. This success is likely attributed to 
two things. First, this variant, dimensionally, is the closest 
variant to the original PL-PL used in training, as the only 
difference is the squared fingertip on the right finger. Second, 
this variant was tested with two rounded objects (circle and 
oval), and therefore no sliding occurred during manipulation, 
which is normally the most difficult to classify. While evaluated 
variants that were tested with sliding cases, the PS-PL 
performed the best with a total classification accuracy of 84.4% 
(FS3). This variant also had the highest sliding accuracy among 
any of the five variants throughout all features sets, which can 
likely be attributed to the fact that this variant has the same 
distal link as the training PL-PL variant. The PS-PS-PS gripper 
variant performs the worst of the five variants—this variant has 
a more limited workspace due to the hard stops at 60° at each 
of the links. Additionally, sliding only occurs on the left side of 
the workspace, since the flat surface of the right most-distal link 
rarely comes in contact with the object. As depicted by the 
confusion matrices in Fig. 13, in general, as the number of 
features is reduced, the ability for the system to accurately 
predict sliding greatly reduces. For example, in the PS-PS-PS 
variant for FS1, the classification for sliding is 66%, but in FS3 
the accuracy is just 4%. This is a fairly specific case, as the 
classification accuracy for sliding only differs from a maximum 
of 12% for the three other gripper variants (from FS1 to FS3). 

As previously discussed, the rightmost column of Fig. 13 
provides workspace plots for the 5 test gripper variants. Plotted 

TABLE III 
FEATURE SETS DETERMINED BY FEATURE REDUCTION 

 Feature Vector 

Feature Set 1 
(FS1) 

𝓈𝓈𝑚𝑚 = (𝓋𝓋𝑥𝑥,𝓋𝓋𝑦𝑦,𝓌𝓌1,𝓌𝓌2,𝓌𝓌𝑝𝑝
𝑖𝑖 ,𝓌𝓌𝑝𝑝

2,  …                  
                 …  ,ℊ𝑚𝑚𝑖𝑖𝑚𝑚,ℊ𝑚𝑚𝑚𝑚𝑥𝑥,𝒽𝒽𝑚𝑚𝑖𝑖𝑚𝑚 ,𝒽𝒽𝑚𝑚𝑚𝑚𝑥𝑥, 𝒸𝒸𝑓𝑓1,𝒸𝒸𝑜𝑜1, 𝒸𝒸𝑓𝑓2, 𝒸𝒸𝑜𝑜2) 

Feature Set 2 
(FS2) 𝓈𝓈𝑚𝑚 = (𝓋𝓋𝑥𝑥,𝓋𝓋𝑦𝑦,𝓌𝓌1,𝓌𝓌2,𝓌𝓌𝑝𝑝

1,𝓌𝓌𝑝𝑝
2,𝒽𝒽𝑚𝑚𝑖𝑖𝑚𝑚 ,𝒽𝒽𝑚𝑚𝑚𝑚𝑥𝑥, 𝑐𝑐𝑜𝑜1) 

Feature Set 3 
(FS3) 𝓈𝓈𝑚𝑚 = (𝓋𝓋𝑦𝑦,𝓌𝓌1,𝓌𝓌2,𝓌𝓌𝑝𝑝

1,𝓌𝓌𝑝𝑝
2) 

 

TABLE IV 
CLASSIFICATION ACCURACY WITH DIFFERING FEATURE SETS 

Variant Feature Set 1 Feature Set 2 Feature Set 3 

PL-PS 90.6 ± 1.2% 87.9 ± 0.9% 84.1 ± 1.6% 

PS-PL 85.1 ± 0.9% 85.0 ± 1.1% 84.4 ± 2.1% 

PL-PLsq 90.6 ± 2.2% 89.2 ± 1.2% 87.6 ± 1.4% 

PS-FL 84.8 ± 1.8% 78.3 ± 2.4% 77.6 ± 1.6% 

PS-PS-PS 79.8 ± 0.7% 79.0 ± 1.3% 70.0 ± 0.8% 

 
 

 

Fig. 14. Feature importance measures provided by the Random Forest 
Classifier via Gini impurity. Features in blue are included in Feature 
Sets 1,2,3, features in red are included in Feature Sets 1,2, and features 
in green are included in Feature Set 1. See Table III. 
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points depict the centroid of the object when a mode was 
detected. While tested objects were of various geometries, this 
plot generally presents where modes were likely to occur within 
the workspace. It is interesting to note how the “regions” for 
different modes change according to the gripper variant, 
especially how varied they are compared to the training hand, 
PL-PL, in Fig. 11.  For example, sliding only occurred on the 
left side of the workspace for the PS-PL and PS-PS-PS variants, 
and a large number of drop cases occurred in the middle of the 
workspace for the PS-FL variant. These workspace plots 
underscore how, where  joint configuration and object center 
location inside of the workspace is important, the properties of 
the hand-object system must be accounted for in order to 
accurately predict modes of manipulation.   

D. Single-Component Feature Reduction 
As stated in Sec. VII.B, some variants were not as susceptible 

to higher classification errors given feature reduction 
techniques, while others were more affected. It was our interest 
to perform feature reduction techniques by removing one 
feature at a time, instead of in sets, as to validate our approach. 
We begin my removing features from least important to most 
important according to the measures presented in Fig. 13.  

The results to this feature reduction are presented in Fig. 15. 
While performing this task on the PL-PL variant with a total of 
3500 observations, we note that the cross-validation accuracy 
remains around 93% while having 9 or more features. 
Thereafter, when only 8 features remain, the accuracy drops to 
87% and continues until 5 features remain. Once only 4 features 
are used for classification, the accuracy starts to decline, as it is 
difficult to determine the decision boundary. This feature 
reduction test validates the decision for 14, 9, and 5 features for 
FS1, FS2, and FS3, respectively (Sec. VII.C), as these are 
volatile intervals when accuracy will likely drop.  

E. Online Classification 
Detection of modes, and their associated regions, are 

somewhat fluid (as presented by the workspace plots) and in 
general, we are interested to see if modes can be successfully 
predicted online to promote safe manipulation. We 

implemented this RF prediction model in an online framework 
to evaluate classification accuracy with two novel gripper 
variants not evaluated in the previous sections (Fig. 16). The 
first variant was tested with the medium oval and consisted of 
a PS-FL left finger and a PS-PS-PS right finger. The second 
variant was tested with the small rectangle and was comprised 
of a PS-FL left finger and a PL-PS right finger. As before, the 
mechanics-based features used for testing were extracted online 
using markers attached to rigid links of the hand. The gripper 
was commanded through random Cartesian velocity references 
for a period between 0.5-4.0 seconds to attempt to cover the 
entire workspace. Once a mode other than normal was detected 
for a period between 0.1-1.0 seconds, the Cartesian velocity 
reference changed randomly to either stop manipulation or 
guide the object back towards the middle of the workspace.  

Online classification using the first novel variant properly 
classified modes normal, drop, and stuck within its workspace 
for the oval object. In addition to these three modes, the second 
variant also included the “sliding” mode. To test the efficacy of 
this online detection, the classifier was run on each hand 5 times 
for 5 minutes. Cartesian velocity references were selected 
randomly, with a goal of remaining within the manipulable 
region of the gripper.  For the first variant, 3 out of the 5 
executions were successfully run for a total of five minutes. The 
object was manipulated safely within the workspace and was 
diverted towards the center of the workspace when a mode other 
than normal was detected. For the other two executions, a 
dropped object was detected at 3 minutes 21 seconds and 4 
minutes 5 seconds. For the second variant, 4 out of the five 
executions successfully completed 5 minutes of manipulation. 
The final failed execution successfully manipulated the object 
for 2 minutes and 34 seconds. This failure was due to the 
amount of sliding the object had undergone without detection 
12 seconds before task failure.  

VIII. DISCUSSION AND FUTURE WORK 
In this work, we showed that by learning from mechanics-

based features, which represent high-level properties of the 
hand-object system, we were able to successfully transfer mode 
prediction accuracies between different gripper variants. We 
first provided bounds by which mechanics-based features were 

 
 
 
 
 

Fig. 15. Five-fold cross validation accuracy of the PL-PL training 
variant. Features were reduced one at a time subject to their 
classification accuracy contribution (see Fig. 14). 

 
 
 
 
 
 

Fig. 16. Online classification of two novel gripper variants. The arrow 
signifies the Cartesian velocity reference and the text (Drop or Sliding) 
signifies the predicted mode. (Left) A PS-FL left finger and a PS-PS-
PS right finger perform manipulation and the online classifier predicts 
a drop will occur given the Cartesian velocity reference. (Right) A PS-
FL left finger and a PL-PS right finger predicts sliding will occur 
during manipulation. 
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likely to better transfer than their joint-based counterparts. We 
then tested this notion physically with different hand variants. 
Specifically, the 92.3% five-fold cross validation accuracy of 
the training variant was marginally greater than the 90.6% 
classification accuracy of the PL-PLsq and PL-PS variants. 
However, we did note that these features presented 
shortcomings in accurately predicting sliding when stiffness 
ratios changed between variants. Additional sensing modalities 
such as tactile sensing at the fingertips would likely be 
beneficial for classification.  

The features included in FS3, or the set containing finger 
manipulability measures, contribute the most to the success of 
the classifier (75.2% of the Gini impurity measure). The 𝓋𝓋𝑦𝑦 
component benefits classification in that, according to the 
workspace plots, it likely discriminates between the drop, 
normal, and stuck regions as the y-position component passes 
through all three. When coupled with the finger manipulability 
measures, these values together determine where the object is 
within the workspace and where it is headed, and in general, the 
hand-object configuration. It is our belief that the other features 
defined, such as singular values of the Hand-Object Jacobian 
and the contact curvatures, are important for stable 
manipulation capabilities when fingerpad curvatures change 
more drastically, or different gripper types (underactuated vs. 
fully actuated) are observed.   

This work elucidates the beginning of what we consider a 
promising approach for learning models in dexterous 
manipulation. While we recognize the drawbacks and 
inaccuracies in predicting sliding as the gripper becomes more 
asymmetric, this approach has proven to be successful for the 
other three modes, and was completed without the use of tactile 
sensing. Although conceptually backed by simulation, the 
majority of our analysis consisted of data that was collected 
physically, which allows us to capture uncertainties of the real 
world. In future work, we plan to investigate this approach 
further by extending this sort of classification to the spatial 
manipulation case, investigating how time series data aids in 
prediction accuracy (e.g. HMMs), further modeling this 
approach for deformable contacts and objects, and testing such 
methods on more commercial, readily-available robot grippers. 
Furthermore, we are interested in how adding single unit tactile 
sensors at the fingertips may be beneficial  in detecting sliding 
cases when using different gripper variants.  

While this approach of using mechanics-based features for 
learning dexterous manipulation can be applied to any hand 
design, it is particularly useful for soft, compliant, or 
underactuated hands that typically do not have tactile sensors or 
joint encoders. Fundamentally, dexterous manipulation extends 
the workspace of the manipulator and is a valuable tool for the 
future of robotics in society. We hope that the robustness 
demonstrated by testing different gripper variants encourages 
researchers to search for features that represent higher-level 
properties of the system for a more enlightened discussion on 
learning system models.  
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