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Abstract

We consider the problem of in-hand dexterous manipulation with a focus on unknown or uncertain hand–object para-

meters, such as hand configuration, object pose within hand, and contact positions. In particular, in this work we formu-

late a generic framework for hand–object configuration estimation using underactuated hands as an example. Owing to

the passive reconfigurability and the lack of encoders in the hand’s joints, it is challenging to estimate, plan, and actively

control underactuated manipulation. By modeling the grasp constraints, we present a particle filter-based framework to

estimate the hand configuration. Specifically, given an arbitrary grasp, we start by sampling a set of hand configuration

hypotheses and then randomly manipulate the object within the hand. While observing the object’s movements as evidence

using an external camera, which is not necessarily calibrated with the hand frame, our estimator calculates the likelihood

of each hypothesis to iteratively estimate the hand configuration. Once converged, the estimator is used to track the hand

configuration in real time for future manipulations. Thereafter, we develop an algorithm to precisely plan and control the

underactuated manipulation to move the grasped object to desired poses. In contrast to most other dexterous manipulation

approaches, our framework does not require any tactile sensing or joint encoders, and can directly operate on any novel

objects, without requiring a model of the object a priori. We implemented our framework on both the Yale Model O hand

and the Yale T42 hand. The results show that the estimation is accurate for different objects, and that the framework can

be easily adapted across different underactuated hand models. In the end, we evaluated our planning and control algo-

rithm with handwriting tasks, and demonstrated the effectiveness of the proposed framework.
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1. Introduction

Dexterous manipulation is an essential ability for robots to

achieve small-scale object manipulation tasks without unne-

cessary large arm motions. However, owing to the complex-

ity in the modeling of highly dynamic hand–object systems,

the planning and control of dexterous manipulation still

remains challenging (Bütepage et al., 2019; Okamura et al.,

2000). To keep the problem tractable, the majority of

research works have investigated various subproblems,

ranging from contact modeling (Bicchi and Kumar, 2000;

Han et al., 1997; Rojas and Dollar, 2016), grasp planning

(Bohg et al., 2014; Hang et al., 2017), grasp control and sta-

bility maintenance (Li et al., 2014), to finger gaiting and

sliding planning (Trinkle and Paul, 1990; Xu et al., 2010),

tactile-based contact estimation (Koval et al., 2016), hand–

object state estimation (Corcoran and Platt, 2010), etc.

While some works have successfully demonstrated in-hand

manipulation capabilities, they usually rely on many sensing

modalities, precise models of objects, simplified task

requirements, or a huge dataset for training (Bütepage et al.,

2019; OpenAI et al., 2018;Tahara et al., 2010).

In order to mitigate the difficulties of working with fully

actuated dexterous hands, underactuated or soft robotic

hands have been developed to simplify the problem of

grasping (Deimel and Brock, 2016; Dollar and Howe,
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2010; Santina et al., 2015). Leveraging their passive recon-

figurability, manipulation stability can be easily achieved,

and hand–object motion models have been derived to con-

trol the in-hand movements of the grasped object (Calli and

Dollar, 2019; Ma and Dollar, 2013). Nonetheless, since one

cannot control each individual joint separately in an under-

actuated hand, there is usually no joint encoders. In addi-

tion, owing to the nature of underactuation, it is difficult to

acquire precise information about underactuated hand–

object configurations. As such, existing approaches have

focused on only planar manipulation tasks, and often

require precise object models to be known a priori (Bircher

et al., 2017). However, the problem of underactuated

manipulation in three dimensions, especially for novel

objects, remains ignored.

This work builds upon our observation that, in many

daily manipulation tasks, it is not necessary to know the

object model in order to accomplish a task. For example, in

order to insert a key grasped by human fingertips, we

mainly care about how the tip of the key is posed. If the fin-

gertip contacts are stable on the key, the control of the tip of

key can be boiled down to the problem of regulating the

positions of the grasping fingertips, which are constrained

by each other’s relative positions. The same scenarios can

be seen in many other applications, such as handwriting or

peg-in-hole problems. Also note that, when manipulating

rigid objects, as long as we can control the movement of

one point on the object, all other points will move in a

deterministic and predictable way, represented by the fixed

transformations on the object body. In this work, we term

the point on the object to be manipulated (e.g., the tip of

key) as the point of manipulation (POM), and focus on the

problem of controlling its movement.

Although in-hand manipulation can be achieved using

different strategies, e.g., by finger gaiting (Xu et al., 2010),

rolling or sliding contacts between the object and fingertips

(Trinkle and Paul, 1990), dual-arm coordination to push

and reconfigure object in-hand (Cruciani et al., 2018), or

even extrinsic dexterity (Dafle et al., 2014), in this work we

focus on small-scale manipulation of the object’s POM. In

particular, as seen in many daily life manipulation

tasks such as key insertion or handwriting, we consider

fixed contacts between the object and fingertips, and

address the problem of manipulating the POM by regulat-

ing relative fingertip positions (Ma and Dollar, 2011). To

ensure grasp stability and focus on the problem of in-hand

manipulation of objects, we opt to adopt underactuated

robotic hands, which can easily provide stable grasps and

do not require complicated sensing or control during

manipulation.

However, in order to precisely manipulate the POM

using fingertips, the first problem one should consider is

how to map the hand’s underactuated inputs to the move-

ment of the fingertips, which then, in turn, map to the

motion of the object. Different from the underactuated

manipulation of known objects in planar setups (Calli and

Dollar, 2019; Ma and Dollar, 2013), it is infeasible to model

this 3D underactuated manipulation system by directly

mapping the actuation inputs to the object movements,

especially given that we aim at manipulating unknown

objects. Instead, it is important to know the hand–object

configuration to establish the mapping, in order to enable

the manipulation planning and control. As such, a major

problem we address is to estimate the hand configuration,

without using any joint encoders. For this, we model the

relationship between the POM and the grasping contacts as

a rigid-body constraint, with which we analyze how the

hand configuration can be modeled in a function mapping

from the actuation inputs to the movement of the POM.

Based on the motion model, we develop a particle filter-

based framework to estimate the hand configuration. In

brief, once the object is grasped, we sample a set of hand

configuration hypotheses and randomly manipulate the

object in a small range. Meanwhile, our system observes

the movements of the POM as the evidence for the particle

filter to calculate the likelihood of each hypothesis, and will

finally obtain the real hand configuration when the particles

are converged. Thereafter, the hand configuration can be

tracked in real time in future manipulations. An example is

shown in Figure 1.

Fig. 1. An apple object is grasped by the Yale Model O underactuated hand, for which the hand joint configuration is unknown. Our

particle filter estimates the hand configuration by randomly manipulating the object within hand, while observing only the movements

of the object tip’s pose. The green points depict the potential contact positions hypothesized by the joint configuration particles, and

the yellow spheres indicate the weighted average of all particles. After nine iterations, our particle filter has converged to the real hand

configuration. The markers on the fingertips are used only for ground-truth comparison.
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In order to control the movement of the POM, we

develop a method to compute a mapping between the

POM’s motion and the actuation inputs, and show that we

can manipulate the POM to trace specified waypoints. In

the rest of this article, we review related works in Section

2, explain the generic particle filter-based framework in

Section 3, and describe the underactuated manipulation

planning and control in Section 4. Thereafter, we provide

an instantiation of the proposed framework using the Yale

OpenHand project in Section 5, present experimental

results in Section 6, and finally conclude in Section 7.

2. Related work

In relation to the scope of this work, we review related

works with respect to the necessary components in manipu-

lation systems, the modeling of hand–object systems, and

underactuated manipulation in previous works.

2.1. System components

Dexterous in-hand manipulation is a multifaceted system-

level problem. Dependent on the hand’s mechanical proper-

ties and the sensors available in a system, the difficulties of

developing a robust and accurate system reside in a variety

of subproblems. For example, for a fully actuated robot

hand, acquiring a grasp and maintaining its stability during

manipulation, even without the consideration of task

requirements, is already a challenging problem (Hang

et al., 2016). If the target object is unknown, approaches

have been developed to estimate the object’s geometry

before any grasping or manipulation can be considered (Li

et al., 2016; Sommer et al., 2014). On the other hand, when

the grasp planning and manipulation stability problems are

mitigated by soft manipulators, the problem is then shifted

towards the coordination between hand’s degrees of actua-

tion, hand synergies, and controllable hand–object motions

(Calli and Dollar, 2019; Deimel et al., 2017; Santina et al.,

2018).

From a system design perspective, most research works

systematically address the problem of dexterous manipula-

tion in three steps (Okamura et al., 2000). First, in the pre-

grasping phase, grasp planning algorithms are developed to

find contact positions (Bohg et al., 2014), hand configura-

tions (Borst et al., 2002), and arm reaching motions

(Eppner and Brock, 2017; Haustein et al., 2017; Kimmel

et al., 2018; Mahler et al., 2017). Thereafter, the generated

plan is executed in the grasping phase, wherein perception

uncertainties are managed, so that the object pose can be

more accurately estimated (Corcoran and Platt, 2010;

Koval et al., 2016), and the grasp can be locally adjusted

based on the vision or tactile feedback to improve stability

(Chebotar et al., 2016). Finally, the post-grasping phase

deals with the manipulation planning and control, in order

to use the grasped object for specific tasks (Calli and

Dollar, 2019; Tahara et al., 2010).

In this work, because the grasp acquisition is relatively

easy for our underactuated hands, we focus on the post-

grasping phase to estimate the hand–object configuration

for manipulation planning and control.

2.2. Hand–object system modeling

Hand–object systems are commonly modeled based on the

precise hand model, object model, and contact model.

When a fully actuated dexterous hand is used, synergies

can be generated to reduce the control complexity (Bicchi

et al., 2011; Ciocarlie et al., 2007). By modeling contacts

as point, rolling, sliding, or area contacts, in-hand object

motions can be analytically synthesized (Bicchi and Kumar,

2000; Han et al., 1997; Sundaralingam and Hermans,

2017). Within an object-centric virtual frame, tripod manip-

ulation can be controlled with an impedance controller (Li

et al., 2014). To handle novel objects and uncertainties in

perception, recent research has been focused on using sen-

sors to address object shape completion (Li et al., 2016),

object pose estimation (Koval et al., 2016), and grasp stabi-

lity maintenance (Hang et al., 2016).

Based on sequential importance resampling (SIR), parti-

cle filters have been adopted for modeling the nonlinear

system dynamics, such as tactile sensing-based contact esti-

mation (Corcoran and Platt, 2010; Koval et al., 2016), and

vision-based sequential multi-object configuration estima-

tion (Sui et al., 2015). However, existing filter-based

approaches mostly only focus on larger-scale manipulation

tasks, including non-prehensile manipulation or whole-

hand grasping. In the problem of in-hand manipulation,

especially for systems with limited perception capabilities,

the problem of estimating the hand–object system to deal

with the uncertainties has still not been addressed. In com-

parison with the existing approaches, in this work we aim

at manipulating novel objects without knowing their geo-

metric models, and will establish the mapping between the

actuation inputs and the POM’s motion online while the

object is being manipulated by an underactuated robotic

hand. For this, we will show that our system can first esti-

mate the hand–object configuration, and then model it into

the mapping to enable the underactuated in-hand

manipulation.

In addition, different from the efforts in human hand

motion tracking, which is usually used for gesture recogni-

tion and human–computer interaction purposes, we are

more interested in accurately estimating the robot hand

configuration in order to control the hand in more complex

manipulation tasks. Moreover, as opposed to the human

hand tracking approaches, which can use special devices or

purely RGB-D input to only track the hand motion and do

not model the hand kinematics (Kim et al., 2009; Sridhar

et al., 2013), we aim to understand the true hand–object

configuration, including both object and joint configura-

tions. We accomplish all of this using minimal sensor input,

and model the object manipulation process in a more expli-

cit framework to enable in-hand manipulation.
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2.3. Dexterous underactuated manipulation

In order to alleviate the sophisticated modeling of the

dynamics and uncertainties involved in grasping and

manipulation, soft manipulators have been developed to

shift the paradigm of precise fully actuated planning and

control to the modeling of underactuated and passive

mechanisms, which can provide robust solutions to sensor-

less compliant stability maintenance (Deimel and Brock,

2016; Dollar and Howe, 2010; Santina et al., 2015). Owing

to their compliant nature, soft hands are particularly useful

in manipulation tasks where physical interactions between

the hand, object, and the environment are expected (Della

Santina et al., 2017; Eppner et al., 2015). Leveraging the

compliant interactions featured by the underactuated hands,

certain manipulation tasks can be robustly achieved in an

open-loop manner, which can be very challenging using a

fully actuated hand, such as using environmental con-

straints to grasp objects, or interacting with both the object

and the environment at the same time (Hang et al., 2019;

Páll et al., 2018; Salvietti et al., 2015).

Although underactuated hands are not commonly con-

sidered to be as good at dexterous manipulation as their

fully actuated counterparts, they are shown to be able to

successfully achieve certain manipulation tasks. Assuming

a simple circular object, one can analytically plan the

motion of the object by minimizing the system energy (Ma

and Dollar, 2013). With vision feedback and learning tech-

niques, planar underactuated manipulation of shape primi-

tives have been demonstrated (Calli et al., 2018; Liarokapis

and Dollar, 2016). However, the state-of-the-art underactu-

ated manipulation solutions usually rely on learning-based

approaches, which require time-consuming data collection

and training, to represent the motion primitives of the

hand–object system (Liarokapis and Dollar, 2019), and

many of them have only demonstrated their capabilities in

planar manipulation tasks (Sintov et al., 2019). The limita-

tions in learning-based approaches mostly come from the

lack of modeling of the exact hand–object system, and as

such the manipulation motions could be only implicitly

described by the learned model, without an explicitly

understanding of how the actuation inputs will change the

object configuration. To push the limits of the manipulation

capabilities, in this work we develop a particle filter-based

framework, and show that the hand configuration can be

estimated without joint encoders, and that underactuated

manipulation can be extended to three dimensions with

explicit actuation planning and control.

3. Hand–object configuration estimation

In this section, we first introduce preliminaries of particle

filters (Thrun et al., 2005), and then formulate a generic

hand–object motion model based on necessary grasp con-

straints. By integrating the hand motion model with the

POM, we finally establish the hand configuration estima-

tion framework.

3.1. Particle filters

Particle filters are a family of non-parametric Bayes filters

based on SIR. In a broad range of robotic applications, it is

adopted to localize mobile robots (Thrun et al., 2005), esti-

mate object poses (Koval et al., 2016), approximating

hand–object configurations (Corcoran and Platt, 2010), etc.

As the key process, a particle filter approximates the distri-

bution of a system’s hidden states by a set of random state

samples, and recursively propagates and refines the

sampled set in terms of the observations, with especially

good functionality for nonlinear systems. Intuitively, the

hidden states of a system are usually some system proper-

ties that cannot be directly obtained from the available sen-

sors, such as the joint configurations of underactuated

robotic hands when only motor positions are known.

However, since we can, for example, observe the pose of

the POM, we can evaluate how likely a hypothesized joint

configuration is the true configuration in terms of our con-

trol inputs and observations. As such, the refinement of the

sampled set can be done by importance resampling in

terms of the likelihood of hypotheses.

Ideally, denoted by xt = fx1
t , x

2
t , . . . , xM

t g the M random

samples, called particles, of the hidden states at time t, the

likelihood of having a particle xm
t in xt is determined by the

posterior:

xm
t ;p(xtjz1:t, u1:t) ð1Þ

where z1:t is the observations until time t, and u1:t is the

control inputs. As implied by (1), if we have a sufficient

number of particles that are drawn from the true underlying

posterior distribution, the particle set xt can be seen as a

non-parametric representation of the state distribution.

However, in practice it is often infeasible to explicitly derive

a true posterior distribution p(xtjz1:t, u1:t), a particle filter

needs to work with a proposal distribution p to recursively

represent the approximation of the distribution:

p(xt);p(xtjxt�1, ut)p(xt�1) ð2Þ

Assuming a set of particles xt has been sampled from p,

based on the definition of importance sampling, the rela-

tionship between p and p is given by

Z
S

p(xt)dxt = h
XM
m = 1

I(xm
t 2 S)wm, xm

t 2 xt ð3Þ

where h =
PM

m = 1 wm
h i�1

is a normalization factor, S is an

arbitrary valid region in the state space, and I( � ) 7!½0, 1� is

an indicator function denoting whether a sample xm
t 2 xt is

in S. Note that there is a weight factor, wm = p(xm
t )=p(xm

t ),

associated with each particle. This weight factor is used to

offset the difference between p and p, so that the probabil-

ity distribution represented by the weighted xt resembles

the true probability of p. Assuming the system is

Markovian, the weight factor is derived in an expanded
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form to utilize the observation zt when the system’s state xt

is not directly available:

wm =
p(ztjxm

t ) p(xm
t jxm

t�1, ut)

p(xm
t jxm

t�1, ut, zt)
ð4Þ

where the probability p(xm
t jxm

t�1, ut) is called a motion

model, and describes how the system transitions under the

control input ut. See Thrun et al. (2005) for more details.

Using the particle weight in (4), a particle filter will then

recursively refine the particle set xt using importance

resampling. Briefly, each time after a control input is given

to the system, the particles will be propagated using the

motion model to transition every xm
t�1 to xm

t , and then the

weight of each particle is calculated. Based on the new par-

ticle weights, the particle set is resampled with the probabil-

ity proportional to the weights. After sufficient iterations,

the particles which are incorrect hypotheses of the state will

be eliminated, and the surviving particles will converge and

will be re-distributed according to the true underlying distri-

bution p. The basic process of a particle filter is summar-

ized in Algorithm 1.

3.2. Hand–object motion model

For most robotic hands, either fully actuated or underactu-

ated, there exists an underlying function that maps from the

actuation inputs to the hand configurations. For fully actu-

ated hands, this function is the forward kinematics func-

tion, which can usually be obtained in an analytical form.

For underactuated hands, although a forward kinematics

function can exist for free-swing motions, such a function

is in general much more complex since the hand configura-

tion is also affected by the external contacts on different

links of the hand. As such, in order to derive a hand–object

motion model in terms of the actuation inputs, most sys-

tems require tactile sensors to localize and measure the

magnitude of contact forces (Ajoudani et al., 2014), or

need precise object models to analyze the pose and motion

of the object (Koval et al., 2016).

However, for the purpose of manipulating an object in-

hand, especially after the object is firmly grasped by the

fingertips, we found that the manipulation can be described

purely by the relative positions between the grasping points

and a point on the object, termed as POM. These relative

positions can uniquely define a grasp constraint and enable

us to explicitly model the mapping between the actuation

inputs and the underactuated hand configurations. In this

work, we focus on small-scale in-hand manipulations that

are used to finely adjust the pose of the object, and do not

consider the larger-scale manipulations where contacts

could move on the object surface, such as finger gaiting,

sliding, or regrasping by extrinsic dexterity. Therefore, we

herein assume that the contacts between the fingertips and

the object are fixed point contacts.

Concretely, let us denote by P= fp1, . . . , pNg, pn 2 R
3,

the N fingertip contacts, we will first define a grasp frame

based on the contact positions. For now, we assume a grasp

is composed of at least three fingertip contacts. For robotic

hands with N = 2, this definition can be adapted as demon-

strated later in Section 5.2. Similar to Hang et al. (2016),

the grasp frame can be defined using any three contacts in

P. Assuming we use the first three contacts, the grasp

frame G is defined as

G= ½rx, ry, rzjro� 2 SE(3)

ro =
1

3
(p1 + p2 + p3)

rx =
p2 � p1

k p2 � p1 k

rz =
(p3 � p2)× rx

k (p3 � p2)× rx k
ry = rz × rx

ð5Þ

As illustrated in Figure 2, we can see that those three con-

tacts uniquely define a frame at the center of the grasp.

Algorithm 1. Particle filter.

Input: xt�1, ut, zt

Output: xt

1: xt  ;
2: for m = 1 : M do
3: sample xm

t ;p(xm
t jxm

t�1, ut) 8 Propagation
4: wm = p(xm

t )=p(xm
t ) 8 Equation (4)

5: end for

6: normalize fw1, . . . ,wMg
7: for m = 1 : M do

8: sample i with probability } wi 8 Resampling

9: xt.append(xi
t) 8 New Particles

10: end for
11: return xt

Fig. 2. A grasp frame defined by three contact points on the

Yale Model O hand. Without an object model, the manipulation

of the POM is determined by the relative positions between the

fingertips and the POM.
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Since all fingertip contacts are firmly fixed on the object,

additional grasp contacts, fp4, . . . , pNg � P (not shown in

the figure which has a three-fingered hand), will keep fixed

positions in G. This further gives us a grasp constraint dur-

ing manipulation that, as long as the contact positions do

not change, the motion of any three contacts actually

uniquely describes the motion of all other contacts.

If the grasped object is rigid, the POM point on the

object also has a fixed relationship between itself and all

grasp contacts. Formally, denoting the position of POM by

po 2 R
3, we have the manipulation constraint:

8pi, pj 2 fP, pog :k pGi � pGj k = const(di, j) ð6Þ

where pGi is the position of pi in the grasp frame G, and

const(di, j) 2 R
+ is the constant distance between points.

This constraint shows that, see Figure 2, the motion of

POM is fully constrained by the motion of grasp contacts,

and can be uniquely described by the motion of any three

contacts in P. Although it is not a concern for three-

fingered hands, for which the three contacts cannot be

colinear to maintain grasp stability, depending on the kine-

matic structure and the hand mechanism designs, it is

important to ensure that the chosen three contacts are never

colinear in order to construct the grasp frame, especially

for hands with more than three fingers. Even if it is diffi-

cult to derive a motion model for underactuated hands,

with the constraint in (6), the motion of the hand–object

system can be modeled as a parallel mechanism, for which

the actuation inputs can be explicitly mapped to the object

movements (Borràs and Dollar, 2015; Ma and Dollar,

2013).

Let A � R
da be the hand actuation space of dimension

da, and C � R
dc be the hand configuration space of dimen-

sion dc. This mapping is conducted in three steps. First,

once a grasp is obtained with hand configuration ct�1 2 C
at time t � 1, given an actuation input ut 2 A, the new hand

configuration is obtained by a function:

ct =G(ct�1, ut) s:t: Equation(6) ð7Þ

Second, based on the hand configuration ct, we can calcu-

late the grasp contacts and then use (5) to obtain the grasp

frame Gt at time t. Finally, as the transformation from the

grasp frame to the POM frame is fixed, the POM’s pose

ft 2 SE(3) at time t is calculated by

ft =Gt � inv(Gt�1) � ft�1 ð8Þ

where inv( � ) is the inverse transformation. In fact, this

three-step process composes the motion model of a hand–

object system. In this work, we represent this motion model

L : C×A× SE(3) 7!SE(3) as

ft = L(ct�1, ut,ft�1) s:t: Equation(6) ð9Þ

We can see that (9) is a recursive motion model, which

describes the object POM’s movement based on its current

hand configuration and the actuation inputs. This is partic-

ularly useful when we want to locally predict the motion of

POM, and it enables us to plan the motion by purely regu-

lating our control in the A space.

However, there is a causality dilemma in the calculation

of the G function. In practice, before we already know the

constraints in (6), we cannot calculate G( � ) to obtain the

hand configuration. On the other hand, if we cannot calcu-

late the hand configuration G( � ), the contact positions in

(6) would not be available for us to compose the constraint.

Therefore, it prevents us from starting the recursion of (9).

In order to break this dilemma, we will next develop

a particle filter-based method to estimate the hand

configuration ct.

3.3. Hand configuration estimation

For most underactuated robotic hands, there are no enco-

ders in the finger joints, and the hand configuration cannot

be obtained directly from other sensors. In addition, since

the hand–object motion model is usually highly nonlinear,

it is difficult to estimate and track the joint configurations.

Using the motion model derived in Section 3.2, we propose

to estimate the hand configuration indirectly using particle

filters.

To this end, we model a hand configuration cm
t�1 as a

particle to represent a hypothesis in the particle filter.

Given the recursive motion model of (7), we can observe

that our hand–object system is Markovian, and that the

hand configuration changes resulted from each actuation

input at a specific time point is a small amount of local

motion. Therefore, although the global hand motion

is quite nonlinear, its recursive local changes can be

described by

p(cm
t jcm

t�1, ut);N (G(cm
t�1, ut),Smotion) ð10Þ

where N ( � ) is a multivariate Gaussian distribution, and

Smotion 2 R
dc × dc is the covariance matrix that accounts for

the system uncertainties caused by control and mechanical

errors. Assuming that the system is able to observe the true

pose ft of the POM, the weight of this particle is then cal-

culated in terms of the difference between the prediction of

(9) and the true observation. Using the predicted cm
t and

(9), we can transition the pose of POM from fm
t�1 to fm

t ,

and the weight of a particle is then updated by

wm =
1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p

q e
�
kfm

t
�ftk2

2sp ð11Þ

where s2
p 2 R is the variance factor accounting for the per-

ception uncertainty. Again note that since POM’s move-

ment described by the recursive model in (9) relates to only

the local pose changes, we choose Gaussian distribution in

(11) to re-weight the particles despite its global nonlinear

motion. From (11) we can observe an important property

of our framework that our system does not require any
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calibration between the hand and the camera which is used

to observe the POM’s movement. This is because we only

need to know the relative movement k fm
t � ft k of the

POM, and it does not matter in what frame this is

measured.

Based on the updated particle weights, the importance

resampling procedure in Section 3.1 can be invoked to re-

distribute the particles towards the true underlying density

distribution. In practice, leveraging the passive compliance

of underactuated hands, we can generate random ut to twid-

dle the object around its initial grasp without dropping the

object. This enables us to physically trigger the particle pro-

pagations and estimate the hand configuration in a particle

filter-based framework.

First, once the object is firmly grasped by the hand, we

generate a set of hypothesis particles, C0 = fc1
0, . . . , cM

0 g,
from a prior distribution C0;p0. Thereafter, we randomly

generate actuation input ut, and predict how the particles

will move. By measuring the difference between the pre-

dicted pose of the POM and the perceived one, we can

update the particle weights using (11). Finally, the particles

are resampled with the probability proportional to their

weights to generate a new particle set. One iteration of this

procedure is summarized in Algorithm 2. Note that in step

6, the POM’s pose is transitioned from the perceived ft�1,

instead of the predicted fm
t�1.

4. Manipulation planning and control

Once the hand configuration is estimated, the motion of the

POM can be recursively described by (9), and we are able

to predict where the POM will move to given an actuation

input ut. However, if we want to control the motion of the

POM, we need to reverse this function, such that we can

calculate what actuation input should be used if we want to

move the POM to a certain pose. Formally, this reversed

function eL : C× SE(3)× SE(3) 7!A takes the form:

ut = eL(ct�1,ft�1,fgoal) ð12Þ

where fgoal 2 SE(3) is the goal pose of POM. Given an

estimated hand configuration ct�1 and the current POM’s

pose ft�1, this function should output the actuation input

ut, so that the POM will be moved to fgoal. However, deriv-

ing this function analytically is often challenging since the

hand–object system is nonlinear and usually constrained by

some grasp configurations, as described by (9).

Although it is in general difficult to reverse such a

motion function, one way to solve this problem is to lever-

age the recursive nature of the demanded function. Similar

to what we discussed in Section 3.3, given a hand config-

uration ct�1 and a POM’s pose ft�1, since (12) only repre-

sents where to move the POM to at the next time step t, it

basically requires to output a control ut that can move the

POM towards the direction of fgoal, rather than moving the

POM directly to the goal pose in one step. Therefore, as a

non-optimal solution, in order to locally control the hand to

trace specified waypoints for the POM, we provide a sim-

ple local gradient-based approach to greedily reverse the

motion function, and leave the development of a global

planner for our future work.

For this, with respect to the forward motion model in

(9), we calculate a Jacobian matrix J 2 R
6× da :

J =
∂L

∂u1
, . . . ,

∂L

∂uda

� �
ð13Þ

where each partial derivative ∂L
∂ui , i = 1, . . . , da, is

∂L

∂ui
=

∂LX

∂ui
,
∂LY

∂ui
,
∂LZ

∂ui
,
∂Lroll

∂ui
,
∂Lpitch

∂ui
,
∂Lyaw

∂ui

� �T
ð14Þ

which represents the partial derivative of the POM’s pose

against the actuation input ui. This vector represents the

partial derivatives in X , Y , Z translations, as well as in the

roll, pitch, and yaw rotations. In this work, the Jacobian is

numerically calculated with small perturbations of u on

function L(�).
Using this Jacobian matrix, the manipulation can be con-

ducted in an iterative manner and the reversed function (12)

is modeled as shown in Algorithm 3. An important thing to

note is that, owing to the nonlinearity of the hand–object

system, it is not likely that a control input ut can be directly

calculated to move the POM to fgoal in one step. Instead, it

is more feasible to model this reversed function in an itera-

tive manner as in Algorithm 3. Doing so, we not only can

iteratively move the POM towards its goal pose, but also can

correct the execution errors since we utilize the real time

feedback as in steps 2 and 3. In practice, a particle filter usu-

ally requires a large number of particles to obtain precise

estimation, and the estimation process in Section 3 may not

satisfy real-time requirements. However, once the estimation

has converged, we downsample the particles and only main-

tain a smaller amount of them for tracking, so that the hand

configuration tracking can be performed in real time.

Algorithm 2. Hand Configuration Estimator.

Input: Ct�1

Output: Ct

1: Ct  ;
2: ut  Actuation:Random()
3: for m = 1 : M do
4: predict cm

t ;N (G(cm
t�1, ut),Smotion) 8 Equation (10)

5: ft = Camera:Perceive()

fm
t = L(cm

t�1, ut,ft�1) 8 Equation (9)

7: wm = 1ffiffiffiffiffiffiffiffi
2ps2

p

p e
�
kfm

t
�ftk2

2sp 8 Equation (11)

8: end for

9: normalize fw1, . . . ,wMg
10: for m = 1 : M do

11: sample i with probability } wi 8 Resampling

12: Ct.append(ci
t) 8 New Particles

13: end for
14: return Ct
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5. An instantiation using Yale OpenHand

Models

In order to utilize the proposed particle filter for estimating

the hand–object configuration, and use the Jacobian-based

method for controlling the movement of the POM, we need

to derive the hand’s motion model in terms of the grasp

constraints and the actuation inputs. In this section, we

instantiate those models using the Yale OpenHand Models

as an example usage (Ma and Dollar, 2017). The Yale

OpenHand project provides multiple hand models, such as

the Model T42 with two fingers, and the Model O with

three fingers. In both models, the fingers are composed of

two joints, driven by a single actuator through a tendon.

The fingers can be installed with either elastic flexure

joints, or spring-loaded revolute joints. In this work, we

describe the modeling details of a revolute–revolute Model

O hand, and additionally show how this can be easily

adapted to a revolute–revolute Model T42 hand.

As mentioned previously, one benefit of using underac-

tuated hands is the ability to easily achieve the manipula-

tion stability, so as to randomly generate actuation inputs to

manipulate the object for the hand–object configuration

estimation. In addition, as will be seen in the experiments,

since the fingertips are convex and the hands are compli-

ant, the contact areas for precision grasps do not deviate

much from one grasp to another, nor during small-scale in-

hand manipulations, which ensures that our fixed contacts-

based modeling is valid for those hands.

5.1. Model O

As shown in Figure 3, the Model O hand is composed of

three fingers with springs and tendons. Each finger is dri-

ven by a single motor through a tendon, and the joint angles

are compliantly determined by the springs and external con-

tacts. Let us denote by rm, rp, and rd the pulley radii at the

motor, the proximal joint, and the distal joint, and by kp and

kd the torsional spring constants of the proximal and distal

joints. The free-swing motion of each finger is modeled in

terms of the energy stored in the springs. Intuitively, given

the same actuation input, although the finger joints can

reconfigure differently depending on the external contact

forces, the finger’s configuration should always find equili-

brium at its minimum energy state when there is no external

contacts. In this work, our hand is controlled by the position

of the motors in radians. When ui = 0, the finger is at its

resting position and the energy is 0. For ui.0, the ith fin-

ger’s energy is

Ei(ci)=
1

2
(kpu2

pi + kdu2
di) ð15Þ

where ci = (upi, udi) are the proximal and distal joint angles

of the ith finger, and they together compose the hand con-

figuration c = (c1, c2, c3) 2 C. In addition, each finger’s

configuration is constrained by

uirm = upirp + udird ð16Þ

which enforces that the tendon length is conserved during

finger motions. During manipulation, we assume the object

is grasped by only the fingertips. As such, the hand config-

uration is not a free-swing configuration and cannot be

decided by only (15) and (16). Fortunately, in terms of the

manipulation constraint in (6), we know that the contacts

have fixed positions in the grasp frame G, and that the hand

should still be configured at the state that minimizes its

elastic energy, similar to the free-swing situation.

Therefore, once a grasp is obtained with actuation input u,

the hand configuration c� is determined by

c�= argmin
c

X
i

Ei(ci) s:t: Equations(6) and (16) ð17Þ

Since this energy minimization is also constrained by (6), we

will need the hand configuration c to obtain this constraint,

so that this minimization can be solved. However, recall the

causality dilemma in Section 3.2, since we cannot acquire

the hand configuration directly from any sensors, we need to

reformulate this process as a recursive motion model as in

(7) to allow the particle filter to estimate the hand configura-

tion. As such, instead of directly using the motor position u,

Algorithm 3. Manipulation Planning and Control.

Input: fgoal, maxIter

1: while maxIter.0 do
2: ft�1  Camera:Perceive()
3: ct�1  TrackHandConfig() 8 Section 3
4: fdiff  (fgoal � ft�1)

5: if k fdiff k\E then
6: return Success 8 Goal Reached
7: end if
8: J  Jacobian(L) 8 Equation (13)

9: Du = JT � fdiff

10: Hand:Execute(Du)
11: t + + , maxIter ��
12: end while
13: return Failure

Fig. 3. Yale Model O Hand with two revolute joints on each

finger.
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we use Du to control the relative changes of the motor posi-

tions, and the constraint in (16) becomes

Duirm = Dupirp + Dudird ð18Þ

Although there exists infinite combinations of Dupi and

Dudi that can satisfy this constraint, there exists only one

combination that can minimize the energy in (15). Thus,

this constraint can be incorporated into (15) and (17) to

recursively calculate energy-minimized hand configura-

tions, and then the particle filter proposed in Section 3 can

be adopted. Note that since we do not change the abduction

angle during manipulation, the hand is only controlled by

opening and closing the fingers. In addition, since the

abduction joint is rigidly coupled with its motor, its joint

angle does not need estimation and can be directly read

from the motor encoder.

5.2. Adaptation for the Model T42

Adapting the proposed framework to model the T42 hand

is straightforward. Since it has only two fingers, we only

need to adapt the modeling of the grasp frame defined in

Section 3.2. As shown in Figure 4, we model one of the

fingers as a combination of both fingertips p2 and p3. In

order to use (5) to calculate the grasp frame, we assign a

very small distance between p2 and p3 in the direction of

the fingertip’s width. As such, the hand–object system of

the T42 can be modeled in the same way as in Section 3.2,

and the particle filter can be directly adopted to estimate

the hand configurations.

When controlling the motion of the fingers, the control

inputs for finger p2 and p3 are degenerated to have a hard

constraint u2[u3. Note that for the energy calculation in

(15), the spring constants kp and kd should be reduced by

half, so that the energy stored in the finger is not

duplicated.

6. Experiments

In this work, the algorithms were implemented in Python

on a machine with Ubuntu 16.04 running on an AMD

Ryzen Threadripper 1950X 16-Core Processor, which

allows us to parallelize the particle propagation using 32

threads. Our experimental setup is shown in Figure 5. In

order to provide particle visualization and enable quanti-

tative evaluation of the estimations, all four cameras are

calibrated in the hand’s frame. Based on this setup, we

are able to track the POM’s movements using the top

camera, and in the meanwhile track the positions of all

the fingertips using the side cameras, which were used

only for ground-truth comparison purposes. Next, we

first evaluate the hand configuration estimator using both

the Model O and the T42 hands, and then provide experi-

mental results of in-hand manipulation using handwriting

tasks.

6.1. Hand configuration estimation

We evaluated the configuration estimator using eight 3D

printed objects shown in Figure 6. In all the experiments,

we fixed the abduction angle to be 308 for the model O

hand and randomly gave objects to the hand to grasp, so

that the contacts on the object are randomized and the hand

configurations cannot be known beforehand. The particles

in our algorithm were uniformly sampled within a range

that is large enough to contain the true hand configuration,

and the number of particles was set to 10, 000 for experi-

ments on Model O, and set to 1, 000 for experiments on

Model T42. Once the estimation process starts, we generate

small actuation inputs for the hand at random in each itera-

tion, as modeled in Section 5, to twiddle the object in-hand.

At the end of each iteration, the POM’s pose in six

Fig. 5. Experimental setup: the top camera is used to track the

motion of the POM, and the side cameras are used to track the

fingertip positions, which are only used for ground-truth

comparison.

Fig. 4. Grasp frame adapted to the Model T42. The left fingertip

is modeled as a combination of fingertips p2 and p3, with a small

distance between them.
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dimensions is observed by the top camera and used as the

input for the filter to propagate the particles and calculate

their weights (see Algorithm 2). This process iterates until

the particles are converged. In practice, we consider an esti-

mation process as converged once the variance of all parti-

cles is below 0:01 rad. After convergence, we downsample

the number of particles to 100 in terms of their weights, so

as to enable real-time tracking.

Although there exist techniques to track the object’s pose

in real time based on the appearance or depth measure-

ments of the object, to focus on the scope of this project

and to simplify the perception of POM, we used AprilTag

markers (Wang and Olson, 2016) and arbitrarily attached

them on the top of objects. In order to obtain the ground

truth for comparison, we also attached markers on the back

of each fingertip for us to calculate the true hand configura-

tions using inverse kinematics. However, those fingertip

markers are not used for hand configuration estimation.

Some example results of the estimation process are shown

in Figure 7 (see also Extension 1). As indicated by the esti-

mated contact positions, which are calculated by forward

kinematics based on the estimated hand configurations, our

approach is able to estimate the hand configurations with

good precision. Although there were little offsets from the

estimated contacts to the real contacts, our estimation

results were good enough to accurately represent the grasp

frame.

A record of the hand configuration estimation process is

illustrated in Figure 8. At the beginning of the estimation,

since the particles were sampled randomly, we can see quite

large errors in estimation. As the estimation iterates, the

error decreased, and the estimation eventually converged to

the true configuration. Since the estimator needs to balance

between all joint angles, the errors in estimating each indi-

vidual joint angles were not monotonically decreasing.

However, we can see that the total error of all joint angles

was almost monotonically decreasing, indicating the effec-

tiveness of the particle filter. In addition, we can see that

the estimation was able to follow the real hand configura-

tion. This ensures that, once the estimation is converged,

we are able to use the estimator as a tracker to track the

hand configuration during future manipulations.

To quantitatively evaluate the performance, we have

repeated the experiments on each object five times and

report the statistics in Table 1. First, it is interesting to note

that the number of iterations taken for the estimator to con-

verge when manipulating different objects are similar,

although the objects are differently shaped and sized. This

is because our system does not model the object geome-

tries. Instead, since the estimator considers only the contacts

and the POM, differently shaped objects are not actually

different, as seen by the estimator. Furthermore, every time

an estimation was converged, we recorded the maximum

error of all joint angles, and the results show that the errors

were not significant. However, as will be seen in our manip-

ulation planning and control experiments, the estimation

errors will cause some noticeable imprecision in manipula-

tion. In practice, we see that because the spring constants

modeled in the hand motion model, see Section 5, cannot

be accurately estimated, the estimation is inherently affected

by this uncertainty, which we plan to address in future

work.

Moreover, we also implemented the proposed framework

on a Model T42 hand. As shown in Figure 9, using the

Fig. 6. Test objects. For the Model O experiments we used the

cylinder (C), short cylinder (SC), twisted triangular prism (TTP),

triangular prism (TP), and deformed cylinder (DC). For the

Model T42 experiments we used the thin cuboid (TC), middle

cuboid (MC), and large cuboid (LC).

Fig. 7. Hand configuration estimations performed by our system using the Model O hand on the test objects shown in Figure 6. In

the pictures, the yellow spheres indicate the contact positions according to the estimated hand configurations. The total estimation

iterations taken for these examples were: 9, 5, 11, 7, and 12. The complete experiment records can be viewed in Extension 1.
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model adaptation from Section 5.2, our approach can also

estimate the hand configuration for this two-fingered hand.

Since this hand has fewer joints to estimate, we used only

1, 000 particles and repeated each experiment five times.

The statistics are reported in Table 1. We can see that the

statistics of the T42 hand are similar to that of the Model O

hand, this indicates that the estimation complexity was not

decreased for this two-fingered hand, even if we need fewer

particles as the problem dimension has become lower, the

number of estimation iterations are still similar due to the

model adaptation does not intrinsically change the motion

model.

6.2. In-hand manipulation

We evaluated the manipulation planning and control

method proposed in Section 4 using the Model O hand. In

the experiments, we first randomly give the cylinder object

Fig. 8. Upper: Joint angle trajectories (y-axis in radians) of the Model O hand manipulating the cylinder object during estimation

iterations (x-axis). (Red: real angles; blue: estimated angles). Lower: Total error of all joint angles (y-axis in radians) during estimation

iterations (x-axis) .

Fig. 9. Hand configuration estimations performed by our system using the Model T42 hand on the TC, MC, and LC objects shown in

Figure 6. The total estimation iterations taken for these examples were 7, 9, and 10.
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into the hand for grasping, and then use the particle filter

to estimate the hand configuration. Once the estimation

converged, we generated waypoints for the POM to trace.

As shown in Figure 10, the hand was tasked to trace the

writing path of English letters ‘‘I,’’‘‘J,’’ and ‘‘R.’’

In this experiment, since we only needed to manipulate

the POM to trace waypoints in R
3 and did not have specific

requirements for the orientation of the POM, we truncated

the partial derivative vector in (14) to contain only the first

three elements, so as to calculate the gradients only for

translational manipulation. As such, the POM was moved

towards each waypoint, with arbitrary orientation as long

as the position could be reached. For reaching each way-

point, we set the maxIter in Algorithm 3 to 10, and turned

to the next waypoint if the maxIter was exhausted. As seen

in Figure 10, the manipulation was able to approximately

pass through all the waypoints to achieve the handwriting

tasks. Since the hand estimation could end up with differ-

ent hand configurations due to the random manipulations,

the letters were written differently each time.

We repeated the writing task for each letter five times

and report the statistics in Table 2. Importantly, we can note

positional errors for almost every waypoint. As mentioned

previously, one of the major reasons for those errors was

that the hand configuration estimation was imperfect, and

the errors from the estimation were propagated to the

manipulations. In addition, recall that the planning and

control is based on the numerical gradient, which is merely

a local representation describing the mapping from the

actuation inputs to the POM’s movements. Therefore,

owing to the nonlinearity of the hand–object system, it is

possible that Algorithm 3 could not find a solution to move

the POM to the exact waypoint.

Moreover, we also tested the manipulation by command-

ing the POM to trace random waypoints of both transla-

tions and orientations in SE(3) using the cylinder object. In

this experiment, the waypoints were sampled sequentially

around the current pose of the POM within a range of

½�5 mm, 5 mm�3 × ½0:2 rad, 0:2 rad�2. Note that due to

the kinematic constraints of the Model O hand, the orienta-

tion in the yaw direction was not sampled. We repeated this

evaluation for 30 times and the average error was 1:9 mm

in position, and 0:09 rad in orientation. Since the controller

had to balance between the positional errors and orienta-

tional errors, we noticed that the positional error was larger

in this case in comparison with the handwriting tasks.

7. Conclusion

In this work, we have proposed a particle filter-based

framework for hand–object configuration estimation, track-

ing, and manipulation planning. As an example usage of

Table 1. Statistics of the hand configuration estimation. Iterations: number of iterations taken until convergence; Error: the maximum

joint angle errors; 6: standard deviation.

Hand Model O T42

Object C SC TTP TP DC TC MC LC

Iterations 9:261:4 10:361:0 11:661:6 8:761:2 9:660:9 8:861:9 12:162:4 9:961:2
Error (10�2 rad) 8:262:1 9:161:4 12:262:3 7:661:1 9:561:3 5:463:1 7:162:2 10:862:1

Table 2. Statistics of handwriting tasks. Iterations: number of

iterations taken to reach a waypoint; Error: average positional

errors; 6: standard deviation.

Letter ‘‘I’’ ‘‘J’’ ‘‘R’’

Iterations 4:262:3 6:163:0 7:163:4
Error (mm) 0:7360:47 1:0260:60 0:9660:27

Fig. 10. The hand was tasked to manipulate the POM to trace the path indicated by waypoints (green dots), in order to write the

letters ‘‘I,’’‘‘J,’’‘‘R,’’ and ‘‘R’’ (green trajectories). The distance between adjacent waypoints was set to 6 mm, and set to 12 mm only for

the long edge of the ‘‘J.’’
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our framework, we used underactuated hands without joint

encoders, and leveraged the passive compliance of the hand

for grasp stability and modeled the hand–object motion by

formulating grasp constraints. In terms of the motion

model, we developed a particle filter-based approach to

estimate the hand configurations. Once an object is grasped,

our system randomly manipulates the object in-hand and in

the meantime observes the movements of the POM. By cal-

culating the likelihood of the hand configuration hypoth-

eses (particles) and iteratively filtering out the unlikely

ones, the particles will finally converge towards the true

hand configuration. Once the estimation is converged, we

provided a method for iterative planning and control of in-

hand manipulation, which is able to achieve underactuated

manipulation by directly generating actuation inputs.

Although we have only shown an example usage with

underactuated hands, our framework can be applied to more

general cases including fully actuated hands. For example,

even if the hand configuration can be directly obtained from

joint encoders of fully actuated hands, we can instead

model the exact contacts between the fingertips and the

object using kinematic equivalents (Rojas and Dollar,

2016), for which the joint configurations are unknown, and

then use our framework to estimate the exact contact posi-

tions to accurately register the object into the hand frame.

However, it has to be noted that adapting the proposed

approach to fully actuated hands requires additional efforts

on manipulation stability maintenance. Different from the

underactuated mechanism, a grasp controller has to be

devised to enable the hand to actively ensure stable contacts

during manipulation. Moreover, more sensing modalities

may be required to improve the system’s robustness. For

example, a tactile feedback-based impedance controller can

be adopted for this purpose (Li et al., 2014).

7.1. Observations and limitations

Our experimental results have shown that the proposed sys-

tem is able to estimate the hand configurations without

needing the geometric model of the grasped object. In addi-

tion, we have shown that our framework can be easily

adapted to different hands with different numbers of fin-

gers. The manipulation capability was evaluated through

handwriting tasks. The results showed that the proposed

manipulation planning and control algorithm is effective in

manipulating the POM to reach commanded positions and

orientations. By analyzing the performance of the proposed

framework, we hypothesize that the estimation errors were

mainly caused by the physical uncertainties of the spring

constants in the modeling of the hand–object motions,

which could have distorted the propagation of the particles.

For the same reason, the manipulation control was also

affected. In addition, we have observed that the local

Jacobian-based planning and control method was not able

to find solutions in some cases, such as when the maxi-

mum number of execution iterations was exhausted, or

when the there exists singularities in the Jacobian matrix.

As a basic assumption of the proposed approach, fixed

contact positions simplified the construction of the grasp

frame, which enabled us to describe the relationship

between contacts and the POM. Using this relationship, we

have derived the motion model of the object, and integrated

the motion model into the particle filtering framework for

hand–object configuration estimation. However, assuming

fixed contacts introduced two limitations to the system’s

capability. First, although we do not need to know the geo-

metry of the object and where the contacts are on the

object, the contact positions on the fingertips have to be

known a priori. In our experiments, since the fingertips are

convex and the hands are compliant, the contact areas for

precision grasps do not deviate much from one grasp to

another, it was therefore possible for us to find out the

locations beforehand. Second, although during the estima-

tion process we require only small random manipulations,

which do not have a major effect on our assumption of

fixed contacts. Once the estimation has converged, our sys-

tem is currently not able to provide larger manipulation

ranges with high accuracy, as larger movements may

require contact changes such as rolling, which can break

the derived motion model.

In addition, it is worthwhile to note that, since the object

motion model relies on the proposed grasp frame, which

has to be rigid in order to uniquely describe the object

motion, our framework does not work for soft or deform-

able objects. In addition, when manipulating heavy objects,

it will be necessary to model the gravitational potential

energy of the object into (15), as the object weight can also

affect the minimum-energy hand configuration. However,

as it is difficult to know the object mass or its mass distri-

bution beforehand, this additional modeling can be very

complicated and actually requires our system to also esti-

mate these parameters along with the hand configuration.

Limited by the scope of this work, we leave this to our

future work.

7.2. Future work

In order to address the identified problems, we plan to

extend the capability of our system to work into more gen-

eral setups, including the estimation of the joint stiffnesses.

In particular, we will formulate the effects of contact rolling

and sliding into our recursive motion model, so that the

hypotheses represented by particles can also model the

dynamic changes of the grasp constraints. With this addi-

tional modeling, we hope to also address a broader range

of application scenarios where finger contacts can be bro-

ken and remade during finger gaiting manipulations. To

further tackle the problem of imperfect perception, instead

of using a marker to track a single POM point, we plan to

track multiple key points at the same time to filter the

potential perception noise, as well as addressing the prob-

lem of occlusions which could happen in single point

tracking.
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Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media type Description

1 Video The complete experiment records
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