
Understanding a Novice Programmer’s Progression of
Reading and Summarizing Source Code

Andrew Morgan
Software Engineering

Research and Empirical
Studies Lab

Department of Computer
Science and Information

Systems
Youngstown State University

Youngstown, Ohio 44555 USA
asmorgan@student.ysu.edu

Bonita Sharif
Software Engineering

Research and Empirical
Studies Lab

Department of Computer
Science and Information

Systems
Youngstown State University

Youngstown, Ohio 44555 USA
bsharif@ysu.edu

Martha E. Crosby
Department of Information and

Computer Sciences
University of Hawaii at Manoa
Honolulu, Hawaii 96822 USA

crosby@hawaii.edu

ABSTRACT
The paper presents observations over the course of three
months on the patterns and strategies a novice programmer
(DO 21) uses while reading source code. The programmer
was asked to read and summarize a program after complet-
ing three sets of lessons from an online course. Results indi-
cate that the method of reading source code gets harder as
the novice attempts to comprehend more difficult concepts.
The analysis is presented in the form of a case study.

Keywords
eye tracking, source code reading, program comprehension
strategies, computer science education

1. INTRODUCTION
Most universities teach students to start writing code early

in introductory programming classes, without teaching them
to read the code for understanding first. The task of com-
prehending code and the process used to teach students this
core skill is at least as important as the task of writing code.
In order to understand the process of reading and under-
standing code, a team of researchers from Freie Universitat
Berlin and the University of Eastern Finland organized the
first workshop on analyzing the expert’s gaze held in Fin-
land in November 2013. This year, the focus of the Koli
workshop is on analyzing gazes of novice programmers.

2. METHOD OVERVIEW
A brief description about the method and study is now

given. All participants of the workshop were granted ac-
cess to three eye tracking sessions (data, visualizations, and
videos) of one novice. Each of the eye tracking sessions were
held after the novice completed certain lessons (namely les-
son 1, lesson 4, and lesson 6) from an online Introduction to
Java Programming Udacity course1. The novice was asked
to study the program for as long as they wished and then
provide a summary. The novice is referred to as DO21 in

1https://www.udacity.com/course/cs046

the paper. An optional data set for another novice named
EU10 was later provided, but was not mandatory for anal-
ysis. The novices were both female and didn’t have much
experience programming. Workshop participants were urged
to describe the data in terms of stages of development and
asked for general thoughts on how this type of data could
be analyzed. The eye tracking sessions were conducted on
May 5th, June 16th, and July 14th of 2014 respectively.

3. OUR PREDICTION
Before we had a chance to look at the data, we were asked

about what we expect to find in the reading behavior and
also what ideas we had on the progress that could be per-
ceived. Our predictions follow. If the student has been
progressing well through the course, we would expect to
see the student getting better at comprehending the source
code given and becoming more efficient within their anal-
ysis. The reading behavior should get more structured as
the student progresses through the course. This more struc-
tured approach is further clarified as the individually unique
technique the programmer uses to understand the presented
source code. The approach, along the way, will become more
structured as the programmer understands his or her own
techniques to interpreting such code. This reading behavior
should also then focus on the important parts of the code.
What is important will vary based on what the task is. For
example, a bug finding task would involve different reading
behaviors compared to a task that just tells the subject to
look over the code and give an overview. At the time of
this prediction, we were not aware of the task (summariza-
tion) in this case. We also predicted that they might find
the answer quicker after lesson 6 when compared to the one
after lesson 1. Every programmer has a different workflow
they follow, however given enough subjects, there should be
some commonality that can be extracted. So how do we
measure progress? We could record time to complete task
as one example. Depending on how long these files are, we
could possibility also segment them into intervals and com-
pare them.

4. ANALYSIS
We now present our analysis of each of the three eye track-

ing sessions namely lesson 1, lesson 4, and lesson 6. These

13



Figure 1: Fixations, Durations, and Nodes per line
for Lesson 1 (pseudocode)

lessons are named after the last lesson the novice did online.
For each of the lessons, we present a graph outlining the
number of fixations, total duration, and nodes per source
line and provide some discussion about them. Note that
even though a line graph is used to show duration and nodes
per line, there is no implicit connection between duration or
nodes. The novice DO21 also provided an accurate sum-
mary (the main task considered for this workshop) after she
read through all the code in each lesson.

4.1 Lesson 1 Analysis
The first lesson’s recording was taken after the novice had

six days of online lessons. The six line program was written
in pseudo code and contained a for loop with an embedded
“if - else” statement. The novice seemed to read the code
as though it were text. Lines 1 and 3 received the most
fixations and also contained the most nodes. We refer to a
node as an area of interest in the data files. For example,
a node could be individual words and phrases contained in
a statement. See Figure 1. We did not see any continual
regressions, however, we noticed that she read the entire
program twice. In this particular case, the time spent read-
ing the lines correlated with the number of fixations on those
lines (which is not always the case). This type of behavior
is very similar to what we would expect of reading text in
a natural language. We also noticed that there were 4 fixa-
tions totaling 961 ms that did not fall on any given line in
the source code.

4.2 Lesson 4 Analysis
After lesson 1, the novice learned about objects and classes.

The eye-tracking recording for lesson 4 was done 42 days
after the recording for lesson 1. Refer to Figure 2. This
source code snippet contained a Scanner object in which in-
put was saved and later used for showing the average on
the screen. The program was 11 lines long (we excluded the
last two lines with braces since no fixations were detected
in that area). The last two lines were mainly brackets so
it could be that the subject perceived with peripheral vi-
sion that the brackets were there or could have also taken
for granted that the program was bug free with no need to
check for braces. It is also possible that the student might
have already learned that the braces were of little impor-
tance. Most of the fixations focused on lines 4, 5, 6, and
9. Line 4 created the Scanner object. Lines 5 and 6 read

Figure 2: Fixations, Durations, and Nodes per line
for Lesson 4 (CalculateAverage)

Figure 3: Fixations, Durations, and Nodes per line
for Lesson 6 (PrintPattern)

in an integer and line 9 did the averaging of two numbers.
If we compare the behavior of this subject with Lesson 1,
it appears that this task was more difficult for her to solve.
As DO21 tries to understand the code and build a mental
model, she checks areas previously read. She reads through
the program twice, i.e. we find two epics, from beginning
to end. Between these two epics, we observed some sort of
searching behavior. There were some regressions during the
searching phase, where things were not looked at sequen-
tially. The number of nodes, fixations and duration do not
correlate in any particular way. In this lesson, there were 72
fixations (10,724 ms) that did not fall on any given line in
the code.

4.3 Lesson 6 Analysis
This lesson was recorded 29 days after Lesson 4. During

this time, they covered decisions and loops. The source code
contained a method called from within the main function.
There was a nested for loop that printed stars in three rows
with each row having one additional star than the previous.
Refer to Figure 3. A lot of time is spent reading through
the nested for loop in the method. Line 3 was the line most
focused on, followed by line 4 and line 2 (method signature).
DO21 spent nearly half a minute on line 3 throughout the
session, which was the first for loop in the nested for con-
struct. The total time spent in the method body was around
47 seconds (47,496 ms, 202 fixations) with about 9 seconds
spent on the method signature (8,956 ms, 51 fixations), the
third most looked at line in the program.

In this session, we counted about 7 epics (times DO21
went through the program from beginning to end). The

14



first time the novice read this program, the first focus was
on lines 2 through 4 to understand what the method was
doing. Later, the programmer proceeded to look at the main
method. However, most of the gazes were focused on the
method declaration’s body. There was very little searching
behavior and a lot more continual regressions between the
lines in the nested for loop indicating a higher cognitive load
because of higher task difficulty. In this lesson, there were
95 fixations totaling 12,503 ms that did not fall on any given
line in the code.

4.4 Internal Testing for Further Analysis
A brief overview of the Java topics was introduced to a

local novice programmer at Youngstown State University
(Y10). In order to fully understand such data, the same
tests were performed on this participant for each of the five
source code snippets (combination of DO21’s and EU10’s).
All regulations were similar to those for the workshop, and
the programmer answered correctly to all summaries of the
code. The only difference is that we conducted this small
experiment all in one sitting.

When we compare Y10’s eye gaze fixations to the two
earlier subjects, we do see similar correlations. Y10’s data
had a tendency to experience Lesson 1 with a reading type
behavior, while other lessons followed with a more problem
solving type path with longer fixations and more focus on
specific statements to understand meaning. Y10 answered
all the summary questions correctly, however he took much
longer time in terms of fixation duration for interpreting
such code. In comparison, Y10 took up to two times the du-
ration compared to DO21, and up to four times the duration
as EU10.

5. STAGES OF DEVELOPMENT
Several studies describe the process of program compre-

hension but the evidence of how and why programmers per-
ceive code is limited. Most studies explain how not why
people read and comprehend programs. In the process of
establishing a methodology for studying program compre-
hension, Weissman [25] found that initially students encoun-
tered problems with constructs of the programming lan-
guage but eventually they were able to extract the programs
meaning. By systematically investigating the effect on pro-
gram comprehension of interactions between knowledge of
the gist, features of the text and participant differences,
it may be possible to determine when paradigm shifts (or
stages as suggested by Flavell [7]) emerge.

Research suggests that stage shifts occur as novices be-
come experts. Adelson [1] shows experts rely on abstract
problem descriptions to understand code using semantics
while novices are driven more by syntax and other catego-
rization strategies. Davies [6], Gilmore and Green [8], Green
and Navarro [10], Rist [18], Soloway and Ehrlich [21] and
Bertholf and Scholtz, [3] argue that experienced program-
mers use programming plans during the comprehension pro-
cess. Little is known about the progression of the processes
involved as novices become experts. Evidence suggests that
some people are more skilled than others, independent of the
number of years programming [11]. However, the underlying
reasons remain elusive.

Program comprehension has been described as 1) top-
down by Brooks [4]; 2) bottom-up by Basili and Mills [2];
Shneiderman and Mayer) [20]; 3) knowledge based by Letovsky

and Soloway [12], 4) as-needed by Littman et al. [13] and
Soloway et al. [22]; 5) control-flow based by Green [9],
Navarro-Prieto [14] and Pennington [15] and 6) integrated by
von Mayrhauser [24]. Research by Clayton, et al. [5]. Shaft
and Vessey [19] and von Mayrhauser and Vans [23] indicates
the top-down approach is used to scan through source code.
While bottom-up is used if people are unfamiliar with a par-
ticular application domain. While the integrated model of
program comprehension is compelling, there is not clear ev-
idence to support this model.

Application domain knowledge has been shown beneficial
for program comprehension. People that are familiar with
a domain tend to understand programs better than people
that are not familiar with the domain [17]. Pennington [15],
Petre et al. [16] and Navarro et al. [14] studied the mental
representations used during program comprehension. Their
studies present a model of how people build a mental im-
age when trying to understand code. However, it is difficult
to extract meaning from scan patterns alone. How do they
relate to other studies that focus on models of program com-
prehension? Can scan patterns be classified in a meaningful
way to clarify stages of comprehension? Comparing the scan
patters of participants who understand the programs gist
versus participants who do not may give insight into when
paradigm shifts or stages occur.

6. SUGGESTIONS
One method of determining a novice’s progression would

be to show them source code that was similar to lesson 1
at lesson 4 and lesson 6. Similarly, it is necessary to show
them source code similar to lesson 4 at lesson 6 in time. We
can then see the learning that has occurred of the concepts
learned at earlier sessions. Since this was not done in this
study, we are not able to say for sure, but only guess as to
what learning occurred. Another point is to design tasks
that take advantage of the kind of mental structure they
use to solve the problem. This can bring out the problem
solving nature of the task that these programs analyzed did
not have, even though they were semantically rich in syntax.

Regarding what points in time need to be examined more
closely, the answer will really depend on what we are trying
to determine. If our goal is to find stages in development
then it is going to take a longer time to follow the person
and have the person be their own control. This will help
us determine when the novice actually exhibits expert like
behavior (if ever) and this is the point at which we can
say that the novice has started using ”chunks” for example
and behaves more like an expert. For example, we could
determine if the novice has now started building hierarchical
tree like representations to solve the task or if they still focus
on a flattened out tree with no clue as to which path to take.
This change of representation needs to come through with a
good selection of tasks.

To fully understand the kind of data presented here re-
quires multiple levels of analysis. The videos and fixation
graphs by time do help. One thing that is also important
is time spent at each fixation. The big circles are indica-
tive of the task getting harder. Sometimes there could be
a few fixations but a lot of time spent on them. Points of
dis-connectivity in the fixation time line graphs also need
to be examined (could imply cognitive load or thinking and
reasoning).

We did not numerically analyze the additional EU10 dataset

15



since the programs used are syntactically and semantically
a lot different at lesson 1 and lesson 4 compared to DO21.
It would not be appropriate to compare them side by side.
Even though the same program was used for lesson 6, EU10
did not summarize the code correctly, so we only provided
a brief visual comparison.

7. DISCUSSION AND CONCLUSIONS
We predicted initially even before we saw the eye track-

ing sessions that the reading would become more struc-
tured. Reading pseudocode was more like a reading task,
which in turn required two linear epics within, to under-
stand. Whereas, the other two were also classified as reading
but it was getting harder for DO21 to read the more complex
constructs. DO21 did provide all correct summaries to the
programs. The fact that the reading got more difficult can
be seen in the data and videos of the sessions. It could be
that the keywords used and structure of the program caused
this to occur. Unfamiliarity with the methods can also cause
this to happen.

We also noticed a lot of fixations that fell either on blank
space on the screen or outside the screen (where the novice
looked at something other than the computer screen). They
may also have closed their eyes briefly to think about the
task at hand. In the timeline graphs provided, these out-of-
screen or out-of-line fixations can be seen as breaks in the
line graphs. These breaks mainly occur during the searching
that happens between the epics.

In visual comparison between Lesson 6 tests’ between DO21
and EU10, we can again see the apparent time difference be-
tween the two. While DO21 appears to interpret presented
code in a problem solving form, EU10 performs fewer epics
on the code itself, along with spending less duration on the
nested for-loop. The fixations for EU10 scattered the length
of the code, compared to focusing such cognitive load on the
main construct of the program. In return, the summariza-
tion of the code was answered incorrectly due to insufficient
understanding within the for loop itself.

We were not able to identify clearly any stages in the
videos or data. One might argue that each of the videos
could be split into three phases where they first read the
program and recognized it, followed by analyzing in detail,
followed by a conclusive stage. However, this is not apparent
while viewing the videos closely or looking at the numbers.
It is too early in the learning process of a difficult skill to find
such stages. It is unclear if they are chunking, for example.
Stages are a profound shift in understanding and we didn’t
see this in the sessions presented.

Another possibility is to distinguish problem solving from
reading. It might also appear that the novice is doing some
form of problem solving in lesson 4 and lesson 6. Lesson
1 appears to be a reading task. However, in order for the
problem solving theory to hold, they had to be working on
a different type of task. Problem solving is a major research
area in cognitive science. In programming, problem solving
is a key skill. However, we do not believe the programs trig-
gered any problem solving type of behavior. The task rep-
resented does not lend itself well to solving a problem where
the participant requires to build and change their mental
representation. In addition, eye movements alone cannot be
used to show this. So we conclude that the novice DO21 is
really in the process of reading and understanding the code
in all lessons but due to the nature of the constructs used,

things are getting harder to read. Do things get easier as
time goes on? We didn’t see it yet but it might in the longer
future. This is when stages in behavior might become more
apparent.

8. REFERENCES
[1] B. Adelson. Structure and Strategy in the

Semantically-Rich Domains. PhD thesis, 1983.

[2] V. R. Basili and H. D. Mills. Understanding and
documenting programs. IEEE Trans. Software Eng,
18:270–283, 1982.

[3] S. J. Bertholf, C. F. Program comprehension of literate
programs by novice programmers. Empirical Studies
of Programmers: Fifth Workshop, page 222, 1993.

[4] R. Brooks. Towards a theory of the comprehension of
computer programs. International Journal of
Man-Machine Studies, 18:543–554, 1983.

[5] R. Clayton, S. Rugaber, and L. Wills. On the
knowledge required to understand a program. Working
Conference on Reverse Engineering, 1998.

[6] S. P. Davies. The nature and development of
programming plans. International Journal of
Man-Machine Studies, 32:461–481, 1990.

[7] J. H. Flavell. Stage-related properties of cognitive
development. Cognitive Psychology, 2:421–453.

[8] D. J. Gilmore and T. R. G. Green. Programming plans
and programming expertise, the quarterly. Journal of
Experimental Psychology, 40A(3):423–442, 1988.

[9] T. R. G. Green. Cognitive approaches to software
comprehension: results, gaps and limitations.
Extended abstract of talk at workshop on Experimental
Psychology in Software Comprehension Studies 97,
1997.

[10] T. R. G. Green and R. Navarro. Programming plans,
imagery, and visual programming. In Nordby, K.,
Helmersen, P. H., Gilmore, D. J., Arnesen, S. (Eds.)
INTERACT-95, pages 139–144, 1995.

[11] A. J. Ko and B. Uttl. Individual differences in program
comprehension strategies in unfamiliar programming
systems. 11th IEEE International Workshop on
Program Comprehension (IWPC’03), 2003.

[12] S. Letovsky and E. Soloway. Delocalized plans and
program comprehension. IEEE Software, pages 41–49,
1986.

[13] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway.
Mental models and software maintenance. J. Syst.
Softw., 7(4):341–355, Dec. 1987.

[14] R. Navarro-Prieto. Mental representation and imagery
in program comprehension. Psychology of
Programming Interest Group, 11th Annual Workshop.,
1999.

[15] N. Pennington. Stimulus structures and mental
representations in expert comprehension of computer
programs. Cognitive Psychology, pages 295–341, 1987.

[16] B. A. F. Petre, Marian. Mental imagery in program
design and visual programming. International Journal
of Human-Computer Studies, pages 7– 30, 1999.

[17] V. Ramalingam and S. Wiedenbeck. An empirical
study of novice program comprehension in the
imperative and object-oriented styles. 7th Workshop
on Empirical Studies of Programmers, 1997.

16



[18] R. S. Rist. Plans in programming: Definition,
demonstration and development. In E. Soloway and S.
Iyengar (Eds.), Empirical Studies of Programmers,
1986.

[19] T. M. Shaft and I. Vessey. The relevance of
application domain knowledge: The case of computer
program comprehension. Information Systems
Research, 6:286–299, 1995.

[20] B. Shneiderman and R. Mayer. Syntactic semantic
interactions in programmer behavior: A model and
experimental results. Intl. J. Comp. and Info.
Sciences, 18:219–238, 1979.

[21] E. Soloway and K. Ehrlich. Plans in programming:
Definition, demonstration and development. Empirical
Studies of Programming Knowledge. IEEE
Transactions on Software Engineering, pages 595–609,

1984.

[22] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and
R. Lampert. Designing documentation to compensate
for delocalized plans. Communications of the ACM,
31:1259–1267, 1988.

[23] A. von Mayrhauser and A. Vans. Comprehension
processes during large scale maintenance. 16th
International Conference on Software Engineering,
1994.

[24] A. von Mayrhauser and A. Vans. Program
understanding: Models and experiments. Advances in
Computers, M. C. Yovits and M. V. Zelkowitz, Eds.
Academic Press Limited, 40, 1995.

[25] L. Weissman. A methodology for studying the
psychological complexity of computer programs. PhD
thesis, 1974.

17


