
Computer Vision ”See and Avoid” Simulation using
OpenGL and OpenCV
Technical Report # CSS17-01

Morgan, Andrew
Youngstown State University

asmorgan@student.ysu.edu

Jones, Zach
Marshall University

jones867@marshall.edu

Chapman, Richard
Auburn University

chapmro@auburn.edu

Biaz, Saad
Auburn, AL 36849

biaz@auburn.edu

January 27, 2017

Abstract

In order to maintain safe flying environments and avoid disastrous midair collisions, the U.S.
Federal Aviation Administration mandates that pilots must ”See and Avoid” other aircraft.
This work develops a See-And-Avoid SAA) system for autonomous Unmanned Aircraft Sys-
tems (UAS) and present a novel approach to implement SAA capabilities using simulated cock-
pit video and computer vision algorithms. The cockpit video is generated using the computer
graphics library OpenGL. The computer vision library OpenCV is used to construct algorithms
for background filtering, obstacle detection, and collision avoidance. A distance-based and a
distance-agnostic algorithms were developed and evaluated on the proposed test bed. Prelim-
inary results with scenarios with two, three or four planes are promising: the two algorithms
significantly decrease the number of collisions.

1 Introduction

Accompanied by recent developments in microcontroller and onboard-computer technology, Un-
manned Aircraft System (UAS) are experiencing explosive growth in civilian, commercial, and
governmental sectors. To maintain safe flying practices and reduce the likelihood of midair colli-
sions, the Federal Aviation Administration (FAA) implements strict regulations on both manned
and unmanned aircraft. A major obstacle to the integration of UAS into unrestricted airspace has
been the inability of UAS to maintain safe flying practices and comply with FAA regulations for
human pilots.

UAS are increasingly using autonomous flight guidance systems, and many recent research
endeavors have focused on ensuring that autonomous UAS are maintained and controlled properly.
For aircraft that fly autonomously, it is imperative that an aircraft can detect and avoid obstacles
in its projected path. Much research has been conducted with a variety of technologies and sensor
hardware, including cameras, radar, transponders, and data-link information exchange (ADS-B).

1



To date, none of the proposed solutions are effective, reliable, and scalable enough to provide a
robust system for real-time obstacle detection and avoidance.

This paper is organized as follows: Section 2 present the problem statement and the motivation
of this work. The literature related to this problem is reviewed in Section 3. Section 4 presents the
proposed See and Avoidance system. The evaluation of the system and the results are discussed in
Section ??. Finally, Section 6 concldes this paper.

2 Problem Statement and Motivation

Midair collisions between two aircraft or between an aircraft and another object are nearly always
disastrous. The consequences of collision often include damage to wildlife and property, loss of the
vehicle, damage to infrastructure, and potentially loss of life. In order to be integrated into civil
airspace, UAS must comply with FAA regulations regarding navigation and right-of-way. According
to FAA order 7610.4, UAS need collision avoidance systems that match or exceed the abilities of a
human pilot.

A major component of a robust avoidance solution is the ability to emulate the ”See and Avoid”
capability of a human pilot. While information exchange systems such as ADS-B have the potential
to provide robust navigation and collision avoidance capabilities, they rely on other aircraft having
specific pieces of reliable hardware and requires communication using a known protocol. SAA
systems provide not only an excellent auxiliary component to information exchange but also are
completely standalone systems capable of detecting obstacles that do not share their location.
Furthermore, as noted by Pham et. al. [11], camera-based vision systems are light, scalable, and
easy to deploy.

The primary objective of this research is to build a robust ”See and Avoid” (SAA) system
capable of detecting and avoiding obstacles using visible light computer vision techniques. The
ultimate goal is the development of a system capable of being deployed on a UAS. Primary con-
sideration is given to fixed-wing UAS due to their inability to come to a complete stop or move
backwards. Collision avoidance on a fixed-wing platform requires real-time vision processing and
course planning.

A secondary objective of the research is to design a test environment that can simulate cock-
pit video. The test environment will consist of a 3-dimensional scene rendered by the computer
graphics library OpenGL. The scene can simulate the view of a front-facing camera mounted to
an aircraft. The camera’s viewport and orientation will change as the aircraft moves and pitches
in response to navigational commands and avoidance maneuvers. The simulated airspace will be
given a realistic background and will contain models of other obstacles and aircraft ranging from
commercial airliners to single-propeller planes.

Real-time vision processing will be accomplished through the use of the Open Computer Vision
OpenCV library. OpenCV will perform many of the filtering and detection algorithms used to
identify other aircraft. The proposed algorithm will consist of a series of transformations included in
the OpenCV library. By feeding the simulated cockpit video to the algorithm, we hope to simulate
real-time flight patterns that the SAA system would enact when integrated with a real aircraft.

2



3 Literature Review

A significant amount of research related to SAA systems has been conducted. As noted by Dayton
[2], some past research focuses on quadrotor UAS. Recently the focus has shifted towards fixed-
wings in order to take advantage of the increased flight times, payload capacity, range, and speed
provided by a fixed-wing platform.

Most research under the domain of SAA systems involves addressing one or more of the following
problems: detection of static or moving objects in the UAS’s field of vision, determination of
collision threats, and procedures for avoiding collision. A complete solution to the SAA problem
would require working subsystems that address each problem. However, most research focuses on
a particular sub-problem.

Some test systems attempt to create a fixed-node control unit on a ground-based computer.
Through this ground unit, often simulated through the Robot Operating System ROS, is where
all UAS are coordinated with flight patters. ROS has the ability to link several collision avoidance
algorithms such as Reverse Inverse Proportional Navigation (RIPNA) [4] and Artificial Potential
Fields (APF) [13]. When running this type of simulation, ROS allows the user to set waypoints,
airspace restraints, and number of aircraft. ROS then coordinates flight patterns to the UAS for
real time flight. Each UAS needs a GPS system in order to work with this method. [6, 7]

Perhaps the most straightforward approach to the SAA problem is a ground-based collision
avoidance system similar to that used by air traffic controllers. Herwitz [14] has patented a ground-
based ”sense-and-avoid display system” (SAVDS) that tracks airborne targets similarly to an air
traffic controller. The ground control station has a radar which displays the position of all aircraft.
Air traffic controllers can issue commands for UAS to change course or, as usual, issue commands
to human pilots to evade collision. However, complete coverage of the airspace is impossible with
such a ground-based system, so many research endeavors have focused on integrating an airborne
SAA system on the UAS itself.

Dayton et. al. [2] developed a collision detection system for fixed-wing UAS capable of
handling both moving and non-moving objects. The OpenCV library was used to process a video
stream from a front-facing, externally-mounted camera. Shi-Tomasi corner detection was used to
identify interesting features to track, and the Lucas-Kanade optical flow method was used to track
moving objects and predict collisions. Ortiz and Neogi [10] proposed a similar method for object
detection in UAS SAA systems. They noted that many other object tracking algorithms are too
computationally intensive to meet the real-time requirements of UAS navigation. They found that
although the optic flow method is a good alternative to more expensive tracking algorithms, it still
may not meet real-time speed. However, advancements in micro-processor technology have since
made optic flow a viable option for object tracking.

Another common technique for target detection in ”see-and-avoid” systems is morphological
filtering. Morphological operations are a class of algorithms that can extract information about
shapes and point-like objects in an image. Carnie et. al. [1] use a morphological operation known
as a ”Close-Minus-Open” (CMO) in order to extract point-like masses from large-scale clutter.
Using this technique, they were able to perform long-range detection of collision targets even
against heavy background clutter such as storm clouds. Initial tests indicate that their algorithm
may be capable of outperforming the human eye at long ranges. However, their system is not yet
capable of extracting information when there is both sky and terrain clutter. Lyu et. al. [9]

3



addressed this problem by first performing a sky-ground segmentation, then following up with a
morphological CMO operation to detect points of interest.

Rather than motion analysis, some researchers employ stereo vision solutions which use multiple
cameras. The most common configuration has two cameras mounted parallel and facing the same
direction. Stereo vision systems can provide information about depth by solving a correspondence
problems between the images from the two cameras. As noted by Ortiz [10], stereo vision systems
are limited by the computational intensity required to process dual sets of images. Some researchers
have attempted to address the high computational cost of stereo vision systems using techniques
such as dynamic programming in [5]. Another approach is to transform the image matching
problem into an optimization problem and solve it using a genetic algorithm as explored by Woo
and Dipanda in [15].

Research combining color optic flow and stereo vision techniques as described by Hravar et.
al. [8] have potential to be more effective than using only a single technique. However, computa-
tional considerations are important due to the real-time nature of vision processing and navigation.
Many other techniques have been investigated on the problem of automatic target detection. Desh-
pande et. al. [3] use max-mean and max-median filters on infrared sensor images to detect small
targets and distinguish them from clutter. Reed et. al. [12] use a technique called ”3-D matched
filtering” to extract target points from background noise.

The doctoral dissertation of Yu [16] explores the implementation of vision based planning,
avoidance, and target tracking on UAS. Two techniques are used to build maps and plan paths
in the local-level frame. The first technique uses a depth map of an environment obtained by
computer vision methods, using an Extended Kalman Filter (EKF) to estimate range and sizes of
obstacles. The second technique constructs local multi-resolution maps using an occupancy grid,
giving higher resolution to the areas that are close to the UAS. Though without triangular vision
provided by a stereo vision setup, depth perception was fairly inaccurate.

In summary, a wide variety of computer vision algorithms have been developed and employed
in hopes of developing SAA capabilities for an autonomous UAS. To date and to the best of our
knowledge, none of the approaches are sufficiently advanced to acceptably replace a human pilot.

4 See and Avoid System

Our research approach to the ”See and Avoid” problem involves two main components. The first is
a test environment for SAA algorithms that can simulate cockpit video as would be collected using
a front-facing camera mounted to a fixed-wing UAS. The ultimate goal of this component is to
provide an excellent test bed for future research of computer-vision based collision avoidance. The
second component involves development of a suite of algorithms that can perform the operations
required of a SAA system - namely, detection of obstacles, prediction of obstacle paths, and issuing
of avoidance commands. The ultimate goal of this research track is to create a SAA system that
can emulate the ”See and Avoid” capabilities of a human pilot.

The first component was developed using the Open Graphics Library (OpenGL). OpenGL is
a cross-platform API for rendering 2D and 3D graphics. OpenGL was used to build a cockpit video
simulator that can provide a stream of images similar to that seen by a front-facing camera. The
simulation includes realistic controls for the speed, direction, and orientation of a fixed-wing UAS.
It also includes the capability to add various backgrounds that can be used to simulate large-scale
background clutter like that present in real cockpit video. Finally, the simulation is also capable

4



of loading additional aircraft and other obstacles into the same airspace as the UAS. It will be the
work of the SAA algorithm to detect these obstacles and avoid them.

The second component was developed using the computer vision library OpenCV. OpenCV is
an open-source library aimed at providing efficient implementation of a huge variety of computer
vision and image processing algorithms. Using OpenCV, a series of transformations are performed
on the current frame of the simulated cockpit video. The transformations are designed to filter out
background noise, enhance target features, and track target features from frame to frame. A full
description of the vision-processing algorithm is included in the next section.

An interface was created to pass images from the OpenGL simulation to the SAA system for
processing. The SAA system analyzes the current image and stores it in a short history. The SAA
system is responsible for recognizing any potential obstacles and, in response, issuing avoidance
commands to the UAS. The avoidance commands will be simulated in the cockpit video to provide
a realistic feedback loop. The SAA system can be further broken down into two subcomponents -
vision processing and collision avoidance.

4.1 Vision Processing

The vision processing algorithm is responsible for detecting objects of interest and providing in-
formation about the objects to the collision avoidance system. Care must be taken to distinguish
objects that could potentially be obstacles from background noise such as cloud and terrain clutter.

Figure 1: OpenGL Rendering
(Top) processed by OpenCV (bot-
tom)

The vision processing algorithm must be efficient enough to pro-
cess video from the camera in near-real-time. An algorithm was
developed based on the edge detection and contour finding pro-
cedures in OpenCV. The following set of steps are used to pro-
cess the cockpit video. First, read an image from the camera
and convert the image to grayscale. Converting to grayscale
helps create more defined edges and removes distracting color
information for the next steps. Next, we use OpenCV’s Canny
function to detect edges in the grayscale image. The detected
edges are then dilated by 500%. This step removes gaps in the
outlines of objects. After dilation, the image is slightly blurred
(using a Gaussian blur) to help remove texture information and
reduce cloud clutter. Finally, the OpenCV’s findContours func-
tion is used to detect closed shapes and draw bounding circles
around the shapes. The output at the end of these steps is an
array of detected objects with the width, height, and location (in
on-screen coordinates) of each detected object. This information
is then passed to the collision avoidance system.

5



Figure 2: Vision Processing Flow Chart

4.2 Collision Avoidance

For a vision-based avoidance system, there are two broad categories of avoidance techniques. The
first involves using visual stimuli to estimate the size of an identified object. If the size is known,
then distance and velocity can be estimated. The second technique is distance-agnostic. That is,
no assumptions are made about distance, and an avoidance maneuver is chosen that considers only
information available from the 2D image captured by the front-facing camera. For this developed
SAA system implementes a version of both techniques. The two algorithms are described below.

Distance-Based Avoidance
The distance-estimation technique used in this research involves the use of a reference frame

and triangle similarity. This technique requires that the tracked object’s actual size be known and
requires an image of the object to be captured at a known distance. This image is known as the
reference frame. The object’s size (in pixels) is measured in the reference frame, and the camera’s
focal length F is computed as F = p·D

S , where p is the measured size in pixels, D is the known
distance to the object in the reference frame, and S is the actual size of the object. Then for
any future image containing the object, the distance d to the object can be computed as d = S·F

p̂ ,
where p̂ is the new measured size in pixels. This technique suffers from the obvious drawback that
it must be calibrated for every object one wishes to recognize. For the proposed system, this team
provided for a large, commercial airliner, a mid-size fighter, and a small personal plane similar to a
Cessna 172. The problem of identifying the object detected by the vision processing algorithm as
a large, medium, or small-class aircraft is a separate research problem. For this SAA system, this
team provided calibration information about the type of aircraft detected to the collision avoidance
system.

Using the triangle similarity technique described above, the distance to the objects detected
by the vision processing algorithm can be estimated every frame. Since the camera’s field of view

6



(FOV) is known, the on-screen position of the object and the distance to the object is enough to
estimate the object’s position. By tracking the objects position over several frames, the object’s
velocity and projected flight path can be estimated. To determine if a collision between the aircraft
and the object is likely, the distance between the projected path and the object’s path can be
estimated as a function of time, and minimized using elementary techniques from calculus. If the
minimum distance is below some threshold, then the object is identified as a collision threat, and
an avoidance maneuver is required.

This proposed algorithm attempts to choose an avoidance maneuver that safely avoids the object
with minimal deviation from the intended course. To avoid the object, the deflection between the
current flight path, and the projected path of the object must increase. The algorithm addresses
five different cases:

1. If the object is to the left and moving to the right, then turn sharply left.

2. If the object is to the left and moving to the left, then turn slightly right.

3. If the object is to the right and moving right, then turn slightly left.

4. If the object is to the right and moving left, then turn hard right.

5. If the object is approaching head-on, then turn slightly left or slightly right depending on the
location of other objects in the sky.

This algorithm was testing in a variety of scenarios. The test cases and results are summarized in
Section ??.

Distance Agnostic Avoidance

Although distance estimation allows for more sophisticated decisions within an avoidance algo-
rithm, distance estimation techniques have potential drawbacks. Distance estimation is not always
possible and, even at its best, is often inaccurate. Furthermore, it requires the SAA system to make
assumptions about the size and type of aircraft in the field of view. It is not particularly practical
to calibrate a distance-estimating system for every possible type of aircraft or airborne obstacle a
UAS may encounter. Thus, it is desirable to develop a distance-agnostic avoidance algorithm that
deflects the problems inherent to distance estimation.

The design of the distance agnostic algorithm is dependent on the hardware used. The first
hardware variable is the camera’s field of view. Typical webcam-like cameras applicable for this
use have a field of view (FOV) of 40-45 degrees. Wide-angle lenses typically provide a FOV of
60 degrees or more, but also have significant focal distortion as the distance from the center of
the FOV increases. This algorithm is built assuming a 42-degree FOV. A second variable is the
resolution of the camera. The algorithm presented below relies on several threshold values which
will change with the resolution of the camera. During development, a resolution of 960x540 was
assumed. For other resolutions, calibration and adjustment of the parameters would be necessary.

The algorithm receives as input the ”blob” information from the vision processor. Each blob
represents a potential threat and contains information about its current size, current position, and
its change in size/position over the past 30 frames. For each blob, we must decide if the blob is a
collision threat. A blob must meet two criteria to be considered a threat.

7



First, it must have obtained a sufficiently high ”danger value” by remaining near the center
or moving closer to the center of the camera’s FOV during the past few frames. To compute the
danger value, we define a weight function f(D) = 10

1+e−0.0001(25000−D , where D is the distance from
the blob’s center to the center of the FOV. Each frame, the value of the weight function is computed
and added to a running total of values from the past 30 frames. The weight function is bounded
above by 300. Values near 300 indicate that the blob stayed near the center of the viewport for the
past 30 frames. Values near 0 indicate that the blob is near the edges of the viewport or moved
away from the center during the past few frames. If the danger value is above some threshold,
then the blob has passed the first criteria. Second, the blob must be sufficiently large before
an avoidance maneuver is attempted. This prevents the algorithm from being too aggressive and
ensures an avoidance maneuver is made only when necessary. Also, if a blob is sufficiently large,
the first criterion is dropped, an avoidance maneuver is immediately attempted.

After the threat criteria are met, the algorithm must determine an avoidance maneuver. This
algorithm was designed to prefer avoidance maneuvers that involves changes in elevation. If a blob
is located in the top half of the viewport, then the UAS will be instructed to avoid by descending
to a lower altitude. If the blob is located in the bottom half of the viewport, then the UAS will
instead be instructed to ascend.

To achieve even more robust avoidance, the algorithm will also add a horizontal component to
the avoidance maneuver when necessary. If the blob is moving to the right relative to the camera
perspective, then the UAS will avoid to the left. If the blob is moving the left, then the UAS will
avoid to the right. The combination of elevation change and horizontal path modification is nearly
always sufficient to avoid a collision, provided that the maneuver is completed in a timely fashion.
However, a horizontal translation nearly always results in a larger deviation from the intended path
than an elevation change, so when the horizontal velocity of a blob is not significant, no horizontal
component will be present in the avoidance maneuver. Additionally, if further ”dangerous” blobs
are detected in the middle of an avoidance maneuver, the current maneuver will be aborted and a
new one will be planned based on the new threats.

5 Evaluation and Results

The OpenGL test bed previously described allows for rapid construction and simulation of various
scenarios. The OpenGL simulation allowed the team to test the vision processing and avoidance
algorithms in collision scenarios that mimic what an autonomous UAS might experience.

The simplest possible collision scenario involves two planes - the plane being autonomously
controlled and some other ”obstacle” plane. The two-plane collision scenarios were tested where
the obstacle plane was approaching the autonomous plane at an angle of 0 degrees (head-on), 45
degrees, 90 degrees, and 160 degrees (overtaking from the rear).

More complex collision scenarios can be devised by adding more obstacle planes. In addition
to the two-plane scenarios described above, three- and four-plane scenarios were tested. The team
included all possible combinations planes approaching at either 0, 45, 90, or 160 degrees, neglecting
the cases where two planes would approach from the same direction.

The results for two-, three-, and four-plane collision scenarios are summarized in the tables
below. The left column describes the orientation of obstacle planes as an ordered pair. For example,
(0, 90, 160) indicates that there were three obstacle planes, one approaching at 0 degrees, one
approaching from 90 degrees, and one overtaking from the rear.

8



Table 1: Two-plane test results
Scenario Distance-Agnostic Distance-Based

0 degrees Avoided Avoided

45 degrees Avoided Avoided

90 degrees Avoided Avoided

160 degrees Collided Collided

Table 2: Three-plane test results
Scenario Distance-Agnostic Distance-Based

(0, 45) Avoided Avoided

(0, 90) Avoided Avoided

(0, 160) Avoided Avoided

(45, 90) Avoided Avoided

(45, 160) Avoided Collided

(90, 160) Avoided Collided

Table 3: Four-plane test results
Scenario Distance-Agnostic Distance-Based

(0, 45, 90) Avoided Avoided

(0, 45, 160) Avoided Avoided

(0, 90, 160) Avoided Avoided

(45, 90, 160) Avoided Collided

In addition to the controlled, multi-plane scenarios described above, tests were run in which
the autonomously controlled plane would fly through a series of checkpoints and would be required
to avoid any other planes in the airspace. In reality, most aircraft will never encounter more than
one ”obstacle plane” at a time unless the aircraft was near a crowded airspace such as an airport.

With this consideration in mind, a scenario was devised in which many planes were maneuvering
in an airspace similar to that of an airport. The autonomous plane is then instructed to fly a course
that crosses through the airport space several times at a variety of angles. While unrealistic for
legal reasons, this scenario provides a robust test for an autonomously guided UAS. As a control,
the simulation was first run with no collision avoidance, and then with the distance-based and
distance-agnostic algorithms.

The most important property of a collision avoidance system is its ability to avoid collisions.
Success of the avoidance algorithm can be measured by the number of collisions per completed
waypoint. Naturally, lower numbers indicate more successful collision avoidance. The following
line chart shows collisions detected versus waypoints completed. The bar chart shows the average
number of collisions per waypoint.

9



Figure 3: Collision avoidance comparison)

A desirable secondary property of a collision avoidance system is to minimize deviation from
the intended course. For all simulations, the deviation from the intended course was measured by
the average time to complete a waypoint. Lower times indicate more efficient avoidance maneuvers.
The following line chart shows flight time versus waypoints completed. The bar chart shows the
average time (in minutes) required to complete one waypoint.

Figure 4: Flight efficiency comparison

The data show that both the distance-based and distance-agnostic algorithms significantly reduce
the number of collisions. The proposed distance-agnostic avoidance outperforms the distance-based
avoidance algorithm in terms of collision avoidance in this simulation. However, this result may
not hold in the general case.

Similarly, the distance-based algorithm outperforms the distance-agnostic algorithm in terms
of flight efficiency, but this result is rather spurious as the distance-based algorithm made fewer
avoidance maneuvers. In both cases, it should be noted that the average waypoint completion time
is close to that of no avoidance, indicating that the algorithms yield a good efficiency. Avoidance
maneuvers appear to take near-minimal deviations from the true course.

10



6 Conclusion

One of the main obstacles to integration of autonomous UAS in civil airspace is the lack of robust
collision avoidance systems. This work explored a collision avoidance system based on a front-facing
visible-light camera. The objective was to emulate the ”See and Avoid” mechanism of a human
pilot.

A test environment of practical airspaces using OpenGL was developed. Furthermore, the tea
constructed a vision processing algorithm and avoidance algorithms to identify threats in the sky
and to avoid them efficiently. Using the test environment, both algorithms performed well as
they were able to avoid many otherwise disastrous collision events while maintaining efficient flight
patterns.

Simulation test illustrated that the vision processing algorithm is quite robust. Nearly all
background noise is filtered, and collision threats are nearly always identified in plenty of time to
execute an avoidance maneuver. However, the proposed avoidance algorithms are still susceptible
to poor analysis of obstacles and poor choices for avoidance maneuvers. Single camera vision cannot
be implemented as the sole avoidance system due to its lacking field of view. Future work will focus
on improving the ability of the SAA system to identify the obstacle aircraft type, direction, and
speed. Using this information, sophisticated avoidance algorithms could be developed to minimize
collision rates and maximize efficiency.

11



References

[1] Carnie, Walker, and Corke. Computer-vision based collision avoidance for UAVs. In Pro-
ceedings 11th Australian International Aerospace Congress, Melbourne, Australia. Accessed
5/25/2016., 2005. http://eprints.qut.edu.au/4627/1/4627.pdf.

[2] Dayton, Enriquez, Gan, Liu, Quintana, and Richards. Obstacle avoidance system for
UAVs using computer vision. Accessed 5/25/16. https://www.cpp.edu/~cppsrc/documents/
Richards.pdf.

[3] Deshpand, Venkateswarlu, and Chan. Max-mean and max-median filters for detection of small
targets. Conference on Signal and Data Processing of Small Targets, 1, 1999.

[4] David Fish, Eric Westman, James Holt, and Saad Biaz. An inverse proportional navigation
algorithm for collision avoidance among multiple unmanned aerial vehicles. Emory Undergrad-
uate Research Journal, 12(3):7p, 2013.

[5] Gonzalez, Cancelas, Alvarez, Fernandez, and Enguita. Fast stereo vision algorithm for robotic
applications. 7th IEEE International Conference on Emerging Technologies and Factory Au-
tomation, 1999. Proceedings., 1, 1999.

[6] James Holt, Chadia Affane Aji, and Saad Biaz. Comparison of UAS collision avoidance algo-
rithms in a simulated environment. Journal of Guidance, Control, and Dynamics, 36(3):881–
883, 2013.

[7] James Holt, Saad Biaz, Levent Yilmaz, Chadia Affane Aji, and Saad Biaz. A symbiotic simu-
lation architecture for evaluating UAVs collision avoidance techniques. Journal of Simulation,
8(1):64–75, April 2014.

[8] Hrabar, Sukhatme, Corke, Usher, and Roberts. Combined optic-flow and stereo-based naviga-
tion of urban canyons for a UAV. 2005 IEEE International Conference on Intelligent Robots
and Systems. Accessed 7/12/2016.

[9] Lyu, Pan, Zhao, Zhu, Tang, and Zhang. A vision based sense and avoid system for
small unmanned helicopter. 2015 International Conference on Unmanned Aircraft Sys-
tems (ICUAS). Accessed 5/25/2016. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=5698303, June 2015.

[10] Ortiz and Neogi. Color optic flow: A computer vision approach for object detection on UAVs.
25th Digital Avionics Systems Conference October 15, 2006. Accessed 5/25/2016. http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4106304.

[11] Pham, Smolka, Stoller, Phan, and Yang. A survey on unmanned aerial vehicle collision avoid-
ance systems. Department of Computer Science, Stony Brook University, Stony Brook, NY,
USA. Accessed 5/25/2016. https://arxiv.org/ftp/arxiv/papers/1508/1508.07723.pdf.

[12] Reed, Gagliardi, and Stotts. Optical moving target detection with 3-d matched filtering. IEEE
Transactions on Aerospace and Electronic Systems, 24(4):327 – 336, July 1988.

12

http://eprints.qut.edu.au/4627/1/4627.pdf
https://www.cpp.edu/~cppsrc/documents/Richards.pdf
https://www.cpp.edu/~cppsrc/documents/Richards.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5698303
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5698303
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4106304
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4106304
https://arxiv.org/ftp/arxiv/papers/1508/1508.07723.pdf


[13] Jason Ruchti, Robert Senkbeil, James Carroll, James Holt, and Saad Biaz. Collision avoidance
in UAVs using artificial potential. AIAA Journal of Aerospace Information Systems, 11(3):140–
144, 2014.

[14] Herwitz S.R. Ground-based sense-and-avoid display system (SAVDS) for unmanned aerial
vehicles, 09 2007.

[15] Woo and Dipanda. Matching lines and points in an active stereo vision system using genetic
algorithms. Proceeding of the International Conference on Image Processing, 3:332 – 335, 2000.

[16] Yu. Vision-based Path Planning, Collision Avoidance, and Target Tracking for Unmanned Air
and Ground Vehicles in Urban Environments. PhD thesis, Brigham Young University, Provo,
UT, USA, 2011. AAI3502484 http://search.proquest.com/docview/963753397.

13

http://search.proquest.com/docview/963753397

	Introduction
	Problem Statement and Motivation
	Literature Review
	See and Avoid System
	Vision Processing
	Collision Avoidance

	Evaluation and Results
	Conclusion

