
Abstract

Observing, Controlling, and Planning Compliant Robot Manipulation

Andrew S. Morgan

2023

Complex robots complicate control; keep designs simple and exploit emergent behavior.

In-hand manipulation is a complicated process—it requires a group of individual ma-

nipulators to work in proper unison with one another, modulating forces on an object while

making and breaking contact. Traditional approaches to realizing such capabilities have

been through the use of overly-complex, anthropomorphic, and thus expensive, robot hands

equipped with a vast array of sensors, which are often noisy and can in turn lead to task fail-

ure. Mechanically compliant end effectors, on the other hand, have shown to be beneficial

to robot manipulation, particularly for grasping, as they are able to “absorb the slack” in

any modeling, sensing, or control uncertainty. As grasping is a necessary element to in-hand

manipulation, it can further be hypothesized that compliant end effectors could be similarly

beneficial for extending these capabilities. However, motions of compliant mechanisms are

typically complex and difficult to analytically model. Moreover, there remain questions

in how to appropriately determine and represent system state—what features need to be

tracked, how accurate do they need to be, and how often do they need to be captured?

These questions can be studied through the lens of grasp mechanics via vision-based feed-

back, which can play a crucial role for such devices that often lack onboard sensing as to

keep designs simple, compact, and inexpensive. Formally, I will present an approach that is

able to observe the state of a compliant hand-object system during manipulation, control

the object along a planned path for fixed-contact in-hand manipulation, and finally, desir-

ably plan the trajectory of a grasped object within-hand given constraints. To close, I will

extensively showcase the applicability of these methods in tight tolerance and open-world

assembly tasks.



Observing, Controlling, and Planning Compliant Robot Manipulation

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by

Andrew S. Morgan

Dissertation Director: Prof. Aaron Dollar

May, 2023



Copyright © 2023 by Andrew S. Morgan

All rights reserved.

ii



To my grandparents

— the ones who taught me to shoot for the moon but only settle for what lies beyond —

iii



“This grumpy old racecar I know once told me somethin’. It’s just an empty cup.”

-Lightning McQueen

iv



Contents

Acknowledgements xx

1 Introduction 1

1.1 Motivation for Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Human Hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Observing the State of a Complaint Hand 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Grasp Mechanics-Based Features . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Finger Manipulability Measures . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Grasp Quality Measures . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Hand-Object Manipulability Measures . . . . . . . . . . . . . . . . . 17

2.3.4 Curvature of Contact . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Bounding Feature Generalizability . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Mechanics of Underactuated Manipulation . . . . . . . . . . . . . . . 20

2.4.2 Mode Characterization in Simulation . . . . . . . . . . . . . . . . . . 22

2.4.3 Bounding Feature Distributions by Statistical Testing . . . . . . . . 24

2.5 Self-Supervised Tagging and Object Reset . . . . . . . . . . . . . . . . . . . 26

2.5.1 Manipulation Primitives . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Geometric Hand-Object Representation . . . . . . . . . . . . . . . . 27

v



2.5.3 Self-Supervised Mode Detection . . . . . . . . . . . . . . . . . . . . . 28

2.5.4 Standardizing Object Reset . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7.1 Classifier Identification and Observation Reduction . . . . . . . . . . 37

2.7.2 Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7.3 Feature Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7.4 Single-Component Feature Reduction . . . . . . . . . . . . . . . . . 43

2.7.5 Online Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Controlling a Compliant Hand for In-hand Manipulation 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Devising a Manipulation Model . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 The Grasp Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Learning from the Energy Model . . . . . . . . . . . . . . . . . . . . 51

3.4 Controlling In-Hand Manipulation . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 The Manipulation Controller . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 Translational Trajectory Control . . . . . . . . . . . . . . . . . . . . 60

3.5.2 Rotational and Mixed Trajectory Control . . . . . . . . . . . . . . . 63

3.5.3 Physical Translation Control . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Planning Finger Gaiting for Compliant Hands 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Constrained Within-Mode Planning . . . . . . . . . . . . . . . . . . 73

vi



4.3.2 Safe Mode Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Orientation-based Motion Planning . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Proper Rotations in SO(3) . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.2 Planning Orientation Transitions . . . . . . . . . . . . . . . . . . . . 78

4.5 Object Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.1 Translational Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.2 Orientation and Translation Control . . . . . . . . . . . . . . . . . . 81

4.5.3 Generalization and Practical Algorithm Modifications . . . . . . . . 81

4.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6.1 Robot Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6.2 Mode Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7.1 Safe Modes Characterization . . . . . . . . . . . . . . . . . . . . . . 87

4.7.2 Single Trajectory Execution . . . . . . . . . . . . . . . . . . . . . . . 87

4.7.3 Continuous Goal Trajectories and Robustness . . . . . . . . . . . . . 88

4.7.4 Generalization to Object Geometry . . . . . . . . . . . . . . . . . . . 89

4.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Robot Assembly with Compliant Robots 92

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Vision-based Tight Tolerance Insertion . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.3 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.4 Insertion Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Force-based Tight Tolerance Insertion . . . . . . . . . . . . . . . . . . . . . 117

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

vii



5.3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Conclusion 133

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Lessons Learned and Future Work . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 Suggestions for Continuing this Line of Work . . . . . . . . . . . . . . . . . 135

A Notes on Visual-based Insertion 137

viii



List of Figures

2.1 Geometric features can be extracted visually during manipulation with a

priori knowledge of the fingertip geometry, object geometry, and the number

of finger links. (Top) A pivot-flexure finger manipulates a pear-shaped object

with rolling contacts (Mode: Normal). (Bottom) A three-link pivot finger

manipulates a rectangular object until sliding occurs along the left finger

(Mode: Sliding). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 By predicting modes of manipulation before or at the moment they occur,

the user is able to transition between modes (trigger or avoid) for desired

manipulation. Modes are typically detected when the hand-object system is

in a similar configuration as those shown. . . . . . . . . . . . . . . . . . . . 8

2.3 Free swing manipulability workspaces for both proposed manipulability mea-

sures. (Top) Free swing trajectories for three two-link planar fingers used in

this work. (Bottom) Free swing trajectory of the three-link planar finger used

in this work. Unlike the penalized manipulability measure, the standard ma-

nipulability measure does not account for joint hard stops. . . . . . . . . . 15

2.4 (A) Annotation of hand parameters required for modeling underactuated ma-

nipulation mechanics. (B) Proximal and distal link lengths in simulation are

changed by the same value, ∆l, as to maintain unit length during simulation. 21

ix



2.5 MANOVA mode distribution testing of grasp mechanics-based features and

position-based features. Green cells generally indicate the extended bounds

by which mechanics-based features are able to transfer beyond that of their

position-based counterpart (blue cells). Red cells indicate that neither of the

feature sets likely share data distributions with the base variant (solid black

cell). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Simple manipulation primitives enable planar motion within the workspace of

a Yale OpenHand Model T42 gripper. These primitives enable the object to

move up, down, left, or right depending on the Cartesian velocity reference,

v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Sliding contacts are detected by verifying rolling contact constraints cannot

be satisfied. In this depiction, we track the velocity of the hand-object contact

points and ensure they are within some normed threshold between each other. 31

2.8 An object crane and stabilization beam with affixed magnets accurately re-

sets the object into the same configuration for each trial. This allows us to

sequentially collect large amounts of data for training. . . . . . . . . . . . . 32

2.9 Manipulation was performed on 6 different gripper variants. The base vari-

ant used in training, the symmetric PL-PL gripper, was evaluated with four

different objects (small circle, large circle, small rectangle, and large rectan-

gle). A total of 3500 points for training were collected for the four identified

modes. The five test variants (PL-PS, PS-PL, PL-PLsq, PS-FL, and PS-

PS-PS) then performed manipulation with two of the six test objects. Two

novel objects were added in testing (medium oval and medium pear). During

manipulation, 50 occurrences of each mode were collected for each gripper-

object combination. A quarter is placed next to the objects for size reference.

*Sliding only occurs with rectangular objects, therefore limiting the number

of sliding cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.10 Six objects were used for testing and training. In the manipulation plane,

object geometries are classified either as a circle, rectangle, oval, or pear. . 35

x



2.11 Depicting regions of the workspace where modes typically occur. Markers

indicate the centroid of the object when a mode was detected. We note the

symmetry of this illustration, were modes typically occur mirrored across the

central axis of the gripper. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.12 Validation of training data size by reducing observations. . . . . . . . . . . 38

2.13 (Left three columns) Confusion matrices for each gripper variant given dif-

fering feature sets (described in Sec. 2.7.3). (Right column) Object centroid

position for modes detected within the workspace of each gripper variant.

(Light Blue-Drop, Dark Blue-Normal, Yellow-Stuck, Red-Sliding) . . . . . 40

2.14 Feature importance measures provided by the Random Forest Classifier via

Gini impurity. Features in blue are included in Feature Sets 1,2,3, features

in red are included in Feature Sets 1,2, and features in green are included in

Feature Set 1. See Table 2.4. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.15 Five-fold cross validation accuracy of the PL-PL training variant. Features

were reduced one at a time subject to their classification accuracy contribu-

tion (see Fig. 2.14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.16 Online classification of two novel gripper variants. The arrow signifies the

Cartesian velocity reference and the text (Drop or Sliding) signifies the pre-

dicted mode. (Left) A PS-FL left finger and a PS-PS-PS right finger perform

manipulation and the online classifier predicts a drop will occur given the

Cartesian velocity reference. (Right) A PS-FL left finger and a PL-PS right

finger predicts sliding will occur during manipulation. . . . . . . . . . . . . 45

3.1 Partially constrained trajectories of the manipulation frame, e.g., ∈ R3, leave

uncertainties in grasp frame planning since the mobility of the mechanism is

subject to constraints imposed by the closed kinematic chain. The proposed

framework utilizes Model Predictive Control to solve for a valid grasp frame

trajectory with any underconstrained reference. . . . . . . . . . . . . . . . 52

xi



3.2 (Left) The tendon transmission of an underactuated finger is dependent on

pulley and spring parameters. (Right) Object geometry can be generalized by

evaluating the triangle relationship, T , between the contacts, and offsetting

the manipulation frame,M, from the grasp frame, X . . . . . . . . . . . . . 53

3.3 A.) The manipulation frame,Mt, can be represented by a rigid transforma-

tion, T , from the grasp frame, Xt. In Alg. 2 a bidirectional guess initializes

the model’s input variables by assuming that the next grasp frame pose,

X̄t+1, has the same velocity, ˙̄Xt+1, as the underconstrained manipulation

frame trajectory transitioning Mt to M̄t+1, which is located on the next

trajectory waypoint rm[wt+1]. B.) While this bidirectional guess serves well

for initialization, kinematic and energy constraints likely limit mobility and

may not allow the grasp frame to move desirably. Thus, the resultant pose

evaluated in the propagation model,M′
t+1(0), does not follow the path. The

optimization then perturbs the grasp frame velocities of the best trajectory

iter times and evaluates the result in propagation model. This depicts a

trajectory convergence with a horizon kp = 3. C.) After optimization, the

first actuation input of the best evaluated trajectory is executed, providing

our true next grasp frame pose Xt+1 and our next manipulation frame pose

Mt+1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Translation control, c = (x, y, z), of the manipulation frame depicting the

reference trajectory in the x − y plane (Red), and the trajectories of Obj.

1 (Green), Obj. 2 (Yellow), and Obj. 3 (Blue). A.) We trace the let-

ters ’GRABLAB’ while varying control horizons and optimization iteration

lengths. As we increase the number of iterations, the manipulation frame

trajectory becomes more accurate. We see that with fewer iterations, the

manipulation frame is not able to follow the desired trajectory. B.) When

the control horizon increases, subsequently, the number of optimization it-

erations must as well to realize similar trajectories. C.) Tracing the word

’GRABLAB’ with the most precise control horizon/iteration pair (horizon of

3 and 100 iterations). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xii



3.5 With a prediction horizon of 3, the letters ’GRABLAB’ were traced with three

different objects while varying optimization iterations. The error experienced

during execution was recorded for each of the trajectories. We identify an

elbow point of 50 iterations satisfies the desired task accuracy. . . . . . . . 63

3.6 A single trajectory in Rotation Control (left) and a single trajectory in Mixed

Control (right) was executed for 5 trials. The controlled dimensions (top)

follow the trajectory as desired. The free dimensions (bottom) are allowed

to drift to any trajectory that adheres to the system constraints. The start

configuration is denoted with a square and the goal configuration (only in

the controlled dimensions) is denoted with a star. . . . . . . . . . . . . . . 64

3.7 Top view of the apple, Rubik’s Cube, and drill from the YCB Object and

Model Set used for physical testing of the control framework. . . . . . . . . 65

3.8 A 4-camera tracking system records both, the pose of the grasp frame and

the pose of the manipulation frame via attached markers. . . . . . . . . . . 66

3.9 The letters ’RAL’ were traced with the manipulation frame on a physical

system for 3 different objects (kp = 3, iter = 50). Top: Three example

executions of writing the letters R (traced with the apple), A (traced with

the Rubik’s Cube), and L (traced with the drill) are presented with their

associated goal points. Middle: The path following accuracy for all three

objects tracing letters ’RAL’. Bottom: The average time and trajectory errors

recorded during execution for all three objects. . . . . . . . . . . . . . . . . 67

4.1 We explore the development of a complete SO(3) planner for within-hand

manipulation using finger gaits, by controlling two orthogonal extrinsic rota-

tion axes. Given a start configuration (cube face A), the proposed planner

finds an action sequence along the two controlled dimensions so as to reach

the desired goal configuration (cube face B). During manipulation, the pose

of the object is tracked via a low-latency, 6D pose object tracker, providing

feedback for online replanning and disturbance compensation via a recovery

phase that uses translation control. . . . . . . . . . . . . . . . . . . . . . . . 70

xiii



4.2 Multi-modal planning problems can be conceptualized as operating in dif-

ferent configuration manifolds. (a) Given a single manifold M, the planner

must find a path along the constrained layer. (b) A single mode, or foliation,

can have multiple manipulation manifolds depending on the start configura-

tion of the hand-object system. (c) Switching modes is possible when the

system finds a configuration, q′, that lies on both manifolds. (d) Finding a

path from start configuration, qs, to goal configuration, qg, can require mul-

tiple jumps between modes. Note that although represented in this figure as

folds, we assume modes to be differentiable but not necessarily euclidean. . 74

4.3 (a) Our planning solution for SO(3) begins by enumerating outward the goal

orientation manifold by step size σR and creating a KD-Tree. (b) After

creation, a forward search outward is performed from the start orientation,

Rs, combining a z−axis rotation first, then an x−axis rotation. (c) This

search continues until a candidate orientation is within some distance ρ from

the expanded goal manifold. (d) Finally, the entire plan is enumerated from

start to goal along the acquired trajectory with appropriate timestamps and

step size σR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 (a) Our system is comprised of a RGBD camera fixated to the robot’s en-

vironment. (b) During manipulation, the pose of the object, e.g., bunny, is

tracked via a 6D pose object tracker. (c) A bottom view of the Yale Model Q

illustrates the 110◦ abduction capabilities of the differentially coupled fingers. 83

4.5 The Yale OpenHand Model Q is capable of operating along four modes for

fingertip-based manipulation. Modes are shown with transitions from the

start configuration (center). . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 (a) We experimentally validate our method with 5 different objects, namely

a cube, sphere, toy truck, Stanford Bunny, and toy duck. (b) Tessellated

faces of the cube show poses of the affixed letters. . . . . . . . . . . . . . . 85

xiv



4.7 The safety of mode transitions are attributed to the reconfigurability of the

underactuated mechanism. (a) Starting rotations around different axes of the

object elicit different amounts of reconfiguration upon regrasping. (b) This

is particularly apparent in the yaw (z−axis) direction of the object, where

the object follows the minimum energy configuration of the mechanism, and

hence allowing us to estimate ρ from Eq. (4.3). . . . . . . . . . . . . . . . . 86

4.8 We execute a single planned trajectory 8 times and record its repeatability.

(a) Controlled dimensions of the object trajectory, such as roll and yaw,

follow closely in all trials, where as uncontrolled dimensions, such as x−axis

translation and pitch, are allowed to drift. (b) Modes are enacted at different

times in the manipulation, including recovery phases when the object is not

in the center of the graspable workspace. . . . . . . . . . . . . . . . . . . . 88

4.9 We test system robustness by (a) following through an extended trajectory of

cube faces F, A, B, C, D, E, and F once again, and (b) deliberately applying

different perturbations to the object along controlled dimensions so as to

require online replanning and recovery. . . . . . . . . . . . . . . . . . . . . . 88

4.10 Our manipulation planner is able to extend to objects of convex and non-

convex geometries, and reach any orientation in SO(3). . . . . . . . . . . . 89

5.1 (a) An RGBD-based 6D object pose tracker monitors the task state, serving

as the primary sensing modality for the robot performing a variety of insertion

tasks with tight tolerances, (b) the sequence of cup stacking. . . . . . . . . 93

5.2 System pipeline: (red) a visual tracking framework trained solely with syn-

thetic data to estimate 6D pose differences, provides feedback for (blue) ma-

nipulation planning and control of a low-impedance manipulator and a com-

pliant end-effector performing within-hand manipulation for insertion tasks. 98

5.3 Physics-aware, high-fidelity synthetic training data are augmented via do-

main randomization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 6D pose tracking on RGBD image observations streamed from the camera. 100

xv



5.5 (a) Object geometry can be generalized by its resultant contact triangle rela-

tionship, T . (b) The response of a tendon-driven underactuated finger given

actuation is dependent on spring constants and pulley radii. . . . . . . . . . 103

5.6 (a) Peg insertion is viewed as a planar challenge. (b) For insertion via purely

rotational motion about X , the peg’s edge is aligned directly above the hole

with a starting angle, β0. (c) Translating M downward to δ guarantees

that a pure rotation will align the peg with the hole, where δc encourages

premature contact and leverages compliance to aid in alignment. (d) Upon

rotation about X , the peg must overcome contact constraints (red friction

cones) of the hole contacts to align for insertion, while aided by virtual spring

forces kc supplied by compliance. . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7 Experimental objects considered in the Tight Tolerance Tasks and Open

World Tasks. All lengths are in mm and points on object faces indicate

PCA-determined edge manipulation frames. (a) small circle, (b) large cir-

cle, (c) pear, (d) triangle, (e) rectangle, (f) YCB 004 sugar box, (g) YCB

008 pudding box, (h) YCB 009 gelatin box, (i) YCB 040 large marker, (j)

green charger. (k)-(n) YCB 065-cups. . . . . . . . . . . . . . . . . . . . . . 109

5.8 (a) System setup overview. (b) Tight tolerance insertion of 5 peg geometries,

highlighting the observational/external view and the tracked 6D pose via the

RGBD camera. (c) System ablations include reducing compliance of the hand

and the arm, in addition to deliberately adding noise to the pose estimate.

(d) The open world task of plug insertion is highlighted, showcasing the

sequence of actions taken from grasp to insertion. (e) Five other open world

tasks were also evaluated – box packing, marker insertion, and cup stacking.

Please refer to the supplementary video for a complete overview of evaluated

tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xvi



5.9 Object insertion can be conceptualized as the continual addition and modula-

tion through time of an object’s constrained degrees-of-freedom. By continu-

ally modulating forces once constraints are detected, tight tolerance insertion

can be achieved without a priori knowledge of the object geometry or exact

hole pose for convex objects. . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.10 The Contact Formation-space (CF-space) of an insertion task can be concep-

tualized as an explicit organization of different contact formations that share

borders according to constraint similarity and possible transitions. Transi-

tions between contact formations are represented when constraints are added

or removed to the state of an object. By controlling paths through a CF-space

from light (few constraints) to dark (more constraints), the object follows a

progression towards insertion. Note: This depiction of contact types is not

exhaustive and other intermediate formations may be possible. . . . . . . . 122

5.11 A Yale OpenHand Model O and a 6-axis force/torque sensor are affixed to

the end of Barrett WAM manipulator. Inside of the palm of the hand, an in-

hand camera setup is fabricated as to monitor the state of the object during

manipulation via an AprilTag. . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.12 Tested objects can be classified into three categories: Tight Tolerance Tasks,

Insertion Toy, and NIST Assembly Task Board. Objects are referenced ac-

cording to their face geometries: (a) circle, (b) pear, (c) large triangle, (d)

rectangle, (e) cube, (f) small triangle, and (g) clove. Subfigure (h) illus-

trates the insertion toy’s hole layout with designated search spaces in green.

NIST objects (i) and (j) are referred to as the plug and gear, respectively. . 128

5.13 An object is pushed along the (a)x−, (b)y−, and (c)z − axes with a linear

pusher to evaluate the force plateau along each dimension, or more specifi-

cally, the amount of force the hand can resist before slip occurs. . . . . . . 128

xvii



5.14 The progression of insertion is depicted in (a), where an object goes from free

space (0 constraints) to inserted (5 constraints) into its goal configuration.

(b) During this process, forces are modulated and added through different

steps in the insertion task (forces are smoothed and placed in the world

frame for clarity). (c) We evaluate this algorithm with tight tolerance tasks,

insertion toys, and objects from the NIST Task Board. . . . . . . . . . . . 131

A.1 The proposed system is robust to external disturbances imposed during task

execution. In this task sequence, the pose of the hole, arm, and object

are all manually perturbed and the system recovers such that the object

successfully reaches its goal configuration. Refer to the supplementary video

for the complete results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2 The ablations make use of two manipulators with different levels of compli-

ance at the arm, hand, or environment level. (a) A Barrett WAM serves as a

low-impedance, compliant manipulator and has been tested with a compliant

(left) and a rigid (right) hand; while the (b) Kuka IIWA is an example of a

rigid manipulator, which has been tested with a rigid hand and a compliant

(left) or rigid (right) hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xviii



List of Tables

2.1 Chapter 2 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Simulated Hand Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Five-Fold Cross Validation Scores on Training Set . . . . . . . . . . . 38

2.4 Feature Sets Determined by Feature Reduction . . . . . . . . . . . . . 42

2.5 Classification Accuracy with Differing Feature Sets . . . . . . . . . . 42

3.1 Chapter 3 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Object properties for those used in simulation . . . . . . . . . . . . . . 62

3.3 Experiment Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Chapter 4 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Experiment Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Tight Tolerance Insertion Results . . . . . . . . . . . . . . . . . . . . . 110

5.2 System Ablation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Metrics for Object Insertion Experiments . . . . . . . . . . . . . . . . . 130

xix



Acknowledgements

Well, this acknowledgements section is more for me than it is for you. So buckle up friends,

because this has been a long and wild ride and I have just a few people I would like to

thank.

Well, first and foremost, I would first like to thank my advisor, Aaron Dollar, for his

years of mentorship on and off the court. The one who took a chance with me all the way

back in January of 2017 when I was graduating from that “small state school”, Youngstown

State University. I still remember opening the offer letter to this day. Yet, I must admit, I

felt like an imposter for the first several months starting this journey, but little by little, I

persevered. He gave me freedom during my PhD to ask questions–usually the wrong ones–

and seek out solutions–though usually the wrong solutions. I am thankful for his willingness

to deal with me throughout these past six years, and more importantly, his perspectives

on practical solutions to robot manipulation. I would also like to extend a huge thank you

to my other committee members—Brian Scassellati and Marynel Vázquez—for their kind

remarks and mentorship along the way. Scaz, your advice was always kind and insightful,

and Marynel, your enthusiasm was encouraging in every conversation we had and I always

left a meeting with a mind full of new ideas.

I would certainly be remiss, before I get into the longer list of acknowledgements, to

not thank the two that I would say made all of this technical work possible, Kaiyu Hang

and Walter Bircher. Around the time of my Area Exam in November 2019, the three of us

banded together with ideas, passion, and jubilance to create the group that Hang referred

to as Quantum Manipulation. While I still wholeheartedly disagree with the roots of the

name Hang made up for this group, the three of us (willfully! and! efficiently!) collaborated

xx



together for three years and produced some pretty encouraging research. Hang, you have

made such an impact in my life and my research career. You have encouraged me to ask

new questions, and well, question my own actual thinking. We have organized academic

workshops together, conceptualized research grants together, and even had a bit of fun

along the way. You are an incredible researcher, mentor, and friend—and I am so thankful

to have spent several years working alongside you. Walley, from day one after my Area

Exam, you and I were thinking of new projects and ways to get half-ideated methods to

work. I can’t believe what we have all been able to accomplish in the (admittedly) short

time we had together. I can’t thank you two enough for both your friendship, and your

willingness to discuss mechanics with me at any time of the day or night.

Wow, how is this already over a page? Huh, well still going along the Yale trajectory, my

labmates have been instrumental in defining my time here. Sam with his hot pots (and cute

cats). Hector with his MIT curiosity and criticism. Vatsal with his, well, very thoughtful

and insightful methods, solutions, and acknowledgements for anything in life or engineering.

Mike Leddy for his jubilancy, friendship, and ATI force-torque sensor code. Yuri for his

questioning of anything known to man. Berk Calli for being my first in-lab mentor, and a

dear friend. Ad Spiers (Señor Peludo) for his sick beats getting me through paper writing.

And finally, the great Neil Bajaj, the friend who knew just a bit about everything, but most

importantly, how to beat the the last mission in Halo 2. I admire you all.

Beyond those at Yale, I would not have even started a PhD without acknowledging the

educators who inspired me to be where I am today. From Youngstown State University, I

would like to acknowledge Amy Cossentino, Ronald Shaklee, and Kerry Meyers. Their love

for learning and teaching was always something that motivated me to be a better student

and educator, and I have been so thankful for their mentorship and friendship along the

way. But even before that, educators and coaches at Mathews High School such as Lou

DeMarco, George Garrett, Jeff Parent, Michael Snyder, Jason Lee, the late Dan Kennedy,

and Jared Terlecky have had a profound impact on my career trajectory beyond words. My

upbringing has taught me many things and has brought me to this important point in my

life. I am so thankful for all of your help and insight along the way.

Throughout this journey, my friends have been one of my major support systems. Ever

xxi



since our time at YSU, my friendship with Pabst, Briggs, and Maddi has only gotten

stronger. I can’t thank them enough for their frequent weekend visits, their words of encour-

agement, and their continued support for me along the way. I can’t underscore this enough.

Additionally, I want to thank my undergraduate roommates Brock, Hova, Nico, and Ryan

who have continued to support me throughout this prolonged academic journey. Who would

have thought we would all be where we are today? And finally, I want to thank the friends

I did acquire during my time at Yale. Lara, you have always been supporting since we met

and convincing me I actually know something about engineering. Those little tidbits always

kept me going. And, while it would be impossible to list the many engineers, Murray affili-

ates, and intramural teammates I interacted with, I would especially like to thank my dear

friends Ariye, Cody, Dan, David, Hailey, Jack, Jade, Josh, Mason, Michelle, Nadeen, and

Stephen for their energy, their kindness, and their memes along the way. I am so thankful I

was able to spend time with you all during this journey, and I look forward to our continued

crazy adventures in the future.

Last and surely not least, I would like to thank my family–Mom, Dad, Chris, Kayla,

Luke, and Elle–for their support and love. I wouldn’t have traded the numerous trips

back to Ohio for weddings, birthdays, holidays, and baptisms for the world. Your love and

support for me along the way, in addition to all from my aunts, uncles, and cousins, was

something that always kept me going and served as a motivation to complete this thesis.

They often say you do your PhD for yourself. Well, I did this PhD for me, but I also did it

for my whole family – especially my grandparents, who I am sure are up there today still

trying to read and understand this thesis. Thank you all for your love and support.

xxii



Chapter 1

Introduction

∼ Complex robots complicate control; keep designs simple and exploit emergent behavior ∼

1.1 Motivation for Society

The dexterous capabilities afforded to humans by our hands are unparalleled to that of

other species, allowing us to complete an array of daily manipulation tasks with ease [1].

As an illustration, let’s examine the task of inserting a key into a lock. First, the hand must

successfully acquire a stable grasp on the key, properly selecting contacts and maintaining

them online via proprioceptive and tactile feedback. Once the contacts are stable and force

modulation is achieved, the key must then be reconfigured within-hand via coordinated

finger motions – balancing forces while making and breaking contact during a finger gaiting

process. Upon reorientation of the key, the hand-object system then evaluates how forces

must be applied by the key into the lock tumbler for successful insertion and then finally

rotation.

This task decomposition serves as a single elaboration of the complex manipulation

tasks humans mindlessly complete daily; seamlessly combining sensing, control, and plan-

ning. Numerous other tasks can be similarly decomposed, e.g., washing dishes [2], inserting

batteries into electronics [3], or preparing food in the kitchen [4]. In emphasizing this nar-

rative, service robots of the future must be able to complete a similar array of “everyday”
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tasks as that of a human, which has been unrealized by robots to date. In this thesis, I will

elaborate on what we feel is a promising approach towards establishing these capabilities

for robot hands and the role I believe compliance will play in this process.

1.2 The Human Hand

A great deal of the human hand’s manipulation capability relies on tactile feedback from

touch sensors located all over our hands. In fact, works dating back decades ago [5], in-

vestigated just how well our hands are able to manipulate objects when this sensation is

muted, even for a brief period of time. While this complicated tasks, it did not make all

manipulation impossible. One observation was just how important vision becomes when

touch is muted—and how we as humans innately have some sort of “fusion” between our

sensing modalities.

While still not completely understood, it is believed that approximately 40% of the

motor and sensory cortex of our brains in humans is devoted just to our hands. And from

that, it is easy to take for granted just how complex these body parts are and how vital of

a role they have played to human evolution. As eloquently said in [1]:

“
In one of his books on nature sciences, the greek philosopher Aristotle (384–322

BC) thus argued against the conceptions of his late colleague Anaxagoras (500?–428

BC ) regarding the relationship between human hands and mind. As they ap-

pear to be the two most distinguished features of humans among animals, the

two philosophers debated whether it was because humans had dexterous hands

that they became intelligent, or the other way around. Anaxagoras’ intuition

has been later on confirmed by several findings of paleoanthropologists, showing

that the mechanical dexterity of the human hand has been a major factor in

allowing homo sapiens to develop a superior brain.

”
2



Yet one observation this quote does not delve into, is just how much of a vital role the

human hand’s compliance likely played over centuries. In particular, as a fun exercise, note

the amount of flexure your distal phalanges are able to reconfigure when a force is applied to

your fingertip—how far can it be pulled backwards? Structurally, this reconfiguration given

an external force or perturbation serves as a mechanism for protecting your fingertips from

damage when grasping in unknown environments, without sensory information, or maybe

just carelessly. The “buckling” nature of this phalange has been dynamically studied [6]

and it is likely that without this mechanism, the human hand would not look the same way

it does today.

1.3 Research Overview

So if humans have some amount of variability in their hand kinematics, and are able to

control a fair number of objects without sensing touch, why can’t robots? This general

realization serves as a basis for the work outlined hereafter. Particularly, I am interested in

understanding the extent to which we can control robot hands that are both, mechanically

compliant and sensorless, i.e., lacking of tactile sensors and joint encoders. How can we

observe the state of the hand-object system for these types of robots? How can we un-

derstand and control “parasitic” motions associated with these mechanisms? How much

does the compliance of these mechanisms help the planning process? And finally, is vision

enough for complex in-hand manipulation and whole-arm assembly tasks?

To keep this research tractable, my work will mostly focus on fingertip-based in-hand

manipulation. I choose to delve into this specific class of manipulation because it will allow

us to formulate complete grasp mechanics-based representations that would theoretically

represent any hand-like end effector, or in other words, a single mechanism with more

than one serial link manipulator, i.e., fingers. Moreover, these studies concerning fingertip-

based in-hand manipulation can serve as building blocks for more advanced whole-hand

manipulation capabilities that do not rely solely on fingertip-only contact, e.g., [7].
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1.4 Thesis Overview

The narrative progression of this thesis will follow the story arc associated with this afore-

mentioned research overview. Specifically, we will begin by discussing grasp mechanics and

introducing some representations that can particularly encapsulate the kinematics associ-

ated with rigid mechanisms and contact mechanics through vision. Thereafter, I will discuss

how these representations are beneficial for observing the state of a hand-object system.

In particular, this formulation allows us to generalize learning for observing the state of

underactuated hands to a certain extent, which is beneficial for transferring learned models

between grippers. This will be discussed in Chapter 2.

Once we can observe the system, we can then focus our work in controlling such robots.

In particular, I will focus on being able to control fixed-contact manipulation with a three-

fingered underactuated gripper. Given desired trajectories, that could be fully- or partially-

constrained, we develop a control algorithm based on Model Predictive Control that is able

to choose actions for the robot. This method benefits from others in the literature in that we

can alter constraints between different goal trajectories and also run our algorithm online via

visual feedback, ultimately allowing us to recover from unmodeled external perterbations.

This will be discussed in Chapter 3.

Planning complex motions as to extend the workspace of the gripper becomes a large

focus thereafter. Specifically, we investigate the use of finger gaiting with an underacuated

hand and develop a multi-modal planning algorithm that leverages the lessons learned from

fixed-contact manipulation. Similar to before, our method is a fast, online algorithm that

relies solely on vision, and can thus recover from unmodeled external perturbations. Our

contributions from this study introduce the overarching theme for this thesis – compliant

robots allow us to accelerate both learning and planning. We show this finding from a robot

planning perspective for the multi-modal case, and discuss how modal transfer configura-

tions turn into modal transfer regions due to the passive adaptive ability of the robot. This

will be discussed in Chapter 4.

Finally, to end this thesis, in Chapter 5 I investigate how our methods and models can

be leveraged for complex, whole-arm assembly tasks. Particularly, we study how vision
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and compliance can work together to complete traditionally difficult or even historically

impossible insertion tasks for robots. These experiments I complete underscore just how

valuable of a role we believe compliance will play in the future of robot manipulation.
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Chapter 2

Observing the State of a

Complaint Hand

2.1 Introduction

Developing robots capable of performing tasks in human-made, unstructured environments

has remained an overarching research question in robotics for several decades. An important

building block to this question is addressing the development of dexterous, within-hand

manipulation (WIHM) capabilities for robotic hands. Dexterous manipulation is often

characterized as the skillful, coordinated use of an end effector to reposition or reorient an

object with respect to the hand frame [1]. An example of this ability includes the task

of removing a key from a pocket, reorienting, and inserting into a lock. In this task, not

only does WIHM enable repositioning and reorientation of the key without re-grasping or

large whole-arm motions, it also allows the robot to avoid undesired system conditions, such

as diverting away from joint singularities, while attempting to repose the key [8]. WIHM

capabilities are especially advantageous for more capable service/home robots—which would

be required to perform a variety of daily activities, such as folding clothes or feeding humans

[4, 9].

Practical implementation of precision WIHM remains a major challenge as coordinated

finger movements with rigid, high degree-of-freedom hands requires accurate hand-object
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models, accurate parameter estimations of the environment, and advanced control schemas,

which may be impossible to derive or estimate. An alternative to WIHM with fully ac-

tuated hands has been through the use of soft, compliant, or underactuated grippers that

are able to passively adapt to their environment. While this ability enables grippers to

more easily handle sensing and perception uncertainty [10], it also introduces difficulties in

modeling—the configuration of the hand is dependent on fingertip forces, joint stiffnesses,

and contact locations, which may be impossible to accurately measure.

Figure 2.1: Geometric features can be extracted visually during manipulation with a pri-
ori knowledge of the fingertip geometry, object geometry, and the number of finger links.
(Top) A pivot-flexure finger manipulates a pear-shaped object with rolling contacts (Mode:
Normal). (Bottom) A three-link pivot finger manipulates a rectangular object until sliding
occurs along the left finger (Mode: Sliding).
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Figure 2.2: By predicting modes of manipulation before or at the moment they occur, the
user is able to transition between modes (trigger or avoid) for desired manipulation. Modes
are typically detected when the hand-object system is in a similar configuration as those
shown.

Due to analytical modeling difficulties, machine learning has been introduced into ma-

nipulation for both, fully-actuated and underactuated hands. Such approaches are able

to intrinsically estimate parameters, e.g., kinetic model parameters or joint stiffness ratios,

that can be difficult or impossible to model via human intervention. While these approaches

can be fairly successful, they often rely on large, unstructured feature sets for training, e.g.,

camera or tactile array inputs [11]. In this approach, little intuition is provided by the

learned model as to what characteristics of the system are most valuable for the task.

In this chapter, we address this drawback by utilizing grounded, mechanics-based fea-

tures that are able to generalize to different system variants. Assuming quasistatic mo-
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tion of both the hand and the object, purely geometric representations—including fin-

ger manipulability measures, grasp quality measures, and hand-object manipulability mea-

sures—constitute as elemental, generalized properties of the hand-object system (Fig. 2.1).

We investigate how these features allow trained models to transfer more successfully than

traditional joint-based features. We use these features to distinguish between four possible

manipulation classes for fingertip-based, prehensile manipulation; namely, normal (rolling

contact), drop, stuck, and sliding. These classes, coined as modes of manipulation for this

work, can be predicted through a self-supervised learning approach—which would enable the

user to either trigger or avoid modes for desired object movement (Fig. 2.2), as in [12,13].

The approach of using mechanics-based features is particularly advantageous for gen-

eralizing models among a task [14]. Due to reliance on the underlying mechanics of the

problem, a single classifier can be self-supervised and trained on one gripper variant and

then transferred to another similar but distinct variant without retraining or data adapta-

tion. We theoretically explore this concept and show the bounds by which hand parameters

can change before mode distributions of the features become distinct between variants. We

also test this experimentally by using estimated Cartesian motion models to randomly ma-

nipulate different objects, and self-tagging each of the modes when they occur. A classifier is

trained offline using a single gripper variant, and we show the transferability of the learned

model for 5 different, asymmetric hands. In the continuation of this chapter, please refer

to the Table 2.1 to utilized nomenclature:
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Table 2.1: Chapter 2 Nomenclature

Symbol Description

General:

q Particular hand configuration: q ∈ R4 or R5

a Configuration of the actuators: a ∈ R2

B,F,O Pose of the base frame, finger frame, or object frame, respectively:
B,F,O ∈ SE(2)

v Velocity = (vx, vy, vθ) ∈ se(2) of the object w.r.t. B

J i Jacobian of the ith finger of the hand: left finger is index 1 and right finger
is index 2. Jh is the Hand Jacobian.

G Grasp Matrix: G ∈ R3×4 in the two-finger, planar case

H Hand-Object Jacobian: H ∈ R3×4 or R3×5

P Object point cloud (Po ∈ R2×N ) w.r.t. O or fingerpad point cloud
(Pf ∈ R2×N ) w.r.t. F

Grasp Mechanics-based Features:

v Cartesian velocity reference of the object: vx in the x−direction and vy in
the y−direction.

wi Manipulability measure of the ith finger: wi
p is the penalized manipulability

measure

g Singular values (SV) of G: gmax max SV, gmin min SV

h Singular values of H: hmax max SV, hmin min SV

ci Curvature of the contact point on the ith finger: ci
f is fingerpad curvature and

ci
o is object curvature

2.2 Related Work

In this section, we present traditional methods to modeling within-hand manipulation.

Following, we cover recent approaches to learning manipulation and this method’s associated

drawbacks, which motivates this work.

Within-hand Manipulation

For several decades, a great deal of research in robot manipulation has focused on ex-

plicitly modeling physical interactions that occur between robots and objects in complex,

unstructured environments—from fundamentals of interactions such as pushing [15], to ob-

ject interactions in highly dynamic and unconstrained environments. The study of these

interactions is especially entailed in the application of WIHM, that requires coordinated
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finger movements while maintaining predefined contact scenarios. Since Okada first used

inverse kinematics to plan joint trajectories for manipulator motion almost four decades

ago [16], nearly every aspect of robot manipulation has been treated with great mathemat-

ical rigor in the pursuit of creating more capable robots [17–22]. This great volume of work

elucidates many powerful relationships between finger joint motion and object motion via

classic formulations such as contact curvatures, the Grasp Matrix, the Hand Jacobian, and

the Hand-Object Jacobian.

Leveraging these mechanical representations and assuming that specific contact mod-

els are warranted by the task, object motion models can be devised. The point contact

with friction model, denoting that forces can be exerted in any direction within the friction

cone, is often used and has led to the formulation of the Hand-Object Jacobian [23], which

represents the transition map from joint movement into object motion. The work in [22]

assumed stationary point contacts without rolling or sliding, virtually fixing the location of

the contact frame on the finger to that on the object. Rolling has been taken into account

as well [24–26], which requires geometric knowledge of the fingerpad and the contact to

maintain precision. More advanced contact models, such as those for soft contacts [27],

have also been introduced. Generally, all contact models are highly subject to material

parameters, such as durometer and texture of the contact, that can change with environ-

mental conditions (humidity or dust). Therefore, parametric estimation often necessitates

on-board sensors, which are expensive, inaccurate, and complicate the design and control

of the hand.

The addition of compliance to the system through either hardware (soft, underactuated)

or software (impedance control [28], soft synergies [29]) can help mitigate uncertainties that

would otherwise lead to task failure. Both approaches introduce passive adaptability to

the system, which permits a grasp to be maintained under reasonable external disturbances

[30]. For example, in [31], this concept is leveraged for in-hand manipulation with simple

control over just two degrees of actuation. Though, due to this compliance, precision

manipulation remains difficult to accurately model or simulate, since the output space is of

higher dimension than the input space [26,32,33].

Two promising approaches to planar precision manipulation with underactuated hands
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have been introduced in our previous works by either using rough gripper models and an

MPC visual servoing framework [34], or learning a state transition model of the gripper [35].

Although object precision was increased in both works, manipulation was focused in a spe-

cific region of the workspace. Moreover, the models learned were system specific and trans-

fer was not addressed in either of these works providing inspiration for this manuscript—to

learn transferrable representations of the gripper to aid in generalizing manipulation.

Learning Manipulation Policies

Learning control policies for dexterous manipulation is a well-studied research area when

analytical representations are unavailable. This approach enables the robot to formulate its

own representative model without hand-tuned, human intervention. Reinforcement Learn-

ing (RL) has shown to be a promising approach to this problem, especially for compliant

systems, e.g., [36]. A major drawback to RL is the amount of data required to train the

model. As presented in [11], over “a hundred years” of object manipulation was collected

in simulation for WIHM of a cube. Though some approaches have addressed this caveat,

e.g., by learning from online videos [37] or guiding the manipulation strategies by combining

imitation learning of a human expert [38,39], simulators, which are often not representative

of real-world contact scenarios, are normally required to develop these learned models. In

addition to these drawbacks, the input dimensionality used in multilayer perceptrons can

be extremely large and will therefore lack interpretability and generalizability for a more

enlightened approach to manipulation. For example, in [11], the input vector was a video

stream from 3 cameras (thus, 3 x 640 x 480 = 921,600 pixels/features).

Aside from learning the entire system model for precision manipulation, detecting object

phenomena such as sliding has also been reported in the literature. Previous works have

learned from tactile “images” to detect the coefficient of friction at the point of incipient

slippage [40,41] and can therefore plan trajectories to avoid slip conditions [42,43]. Unfor-

tunately, due to the nature of this approach, prior exploration with the object is necessary,

which may be infeasible for time-sensitive or mission critical tasks. By leveraging mechan-

ics, slip conditions can also be avoided by ensuring reasonable grasp quality measure values

during manipulation [44]. Nevertheless, compliant, soft, and underactuated hands are often
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not equipped with the sensing modalities required to detect such phenomena, providing

inspiration and purpose for this work.

2.3 Grasp Mechanics-Based Features

In this work, we leverage traditional mechanical models of manipulation to define features

generalizable to different hand variants. Specifically, we extract the most common manipu-

lability measures associated with the hand, the object, and the contacts: a Jacobian-based

manipulation measure, a penalized Jacobian-based manipulability measure, the singular

values of the Grasp Matrix, the singular values of the Hand-Object Jacobian, and the con-

tact curvatures. By learning from these features, which are grounded geometrically to the

state of the gripper, we are able to analyze which traditional grasp-mechanics measures are

able to best represent the hand-object state. A summary of this manuscript’s nomenclature

is presented in Table 2.1. For the remainder of this manuscript, we will refer to the left

finger as index 1 and the right as index 2.

For the following formulations, let’s assume the planar manipulator has n serial-link

fingers, each having ji joints per finger. The configuration of a single finger, qi ∈ Rji ,

represents its current joint angles. Therefore, the hand configuration, q ∈ R
∑n

i=1 j
i
, fully

describes the state of the hand and denotes the angles associated with each of the joints (Fig.

2.1). In traditional modeling for grasping and manipulation, the Hand Jacobian, sometimes

referred to as the Manipulator Jacobian, is denoted as Jh = blkdiag(J1, . . . , Jk), where J i is

the Jacobian for a single, serial-link finger. It is important to note that in underactuated or

compliant systems, the configuration of the gripper cannot be fully described by the state

of the actuators, a. That is, it is likely the dim(a) < dim(q).

2.3.1 Finger Manipulability Measures

The current configuration of a serial-link finger determines its manipulability, i.e., how the

tip of the finger is able to move given an actuation input about each of the joints, and

is represented by the finger Jacobian. This representation is a function from joint input

velocity to fingertip velocity:
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yi = J iq̇i (2.1)

where yi ∈ R2 in the planar case (yi ∈ R3 in the spatial case), J i ∈ R(2×j×i) in the

planar case J i ∈ R(3×j×i) in the spatial case), and qi ∈ Rji . In this work, we utilize both,

two-link and three-link serial manipulators in the plane. From this, we can formulate the

two finger Jacobians:

Two-link finger:

J i
(
qi
)
=

−JA − JB −JB

JD + JE JE

 (2.2)

Three-link finger:

J i
(
qi
)
=

−JA − JB − JC −JB − JC −JC

JD + JE + JF JE + JF JF

 (2.3)

JA = li1 sin(q
i
1)

JB = li2 sin(q
i
1 + qi2)

JC = li3 sin(q
i
1 + qi2 + qi3)

JD = li1 cos(q
i
1)

JE = li2 cos(q
i
1 + qi2)

JF = li3 cos(q
i
1 + qi2 + qi3)

where, more specifically qi =
[
qi1, . . . , q

i
j

]T
, which represents the joint configuration for a

single finger, i. From this Jacobian, we can represent its manipulability measure, wi, for

each finger in the hand [45]:

wi =
√
det(J i ∗ transpose (J i)) (2.4)

As wi approaches zero, this is indicative of the individual mechanism nearing a singular-

ity—which effectively limits the ability to instantaneously move in any direction.
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Figure 2.3: Free swing manipulability workspaces for both proposed manipulability mea-
sures. (Top) Free swing trajectories for three two-link planar fingers used in this work.
(Bottom) Free swing trajectory of the three-link planar finger used in this work. Unlike the
penalized manipulability measure, the standard manipulability measure does not account
for joint hard stops.

A penalized manipulability measure is also proposed, as it better encapsulates limits

of a finger’s workspace by incorporating a priori knowledge of the hard stops, i.e., a finger

link cannot rotate fully around a joint, but typically has a range in which it can operate

[46]. Fundamentally, this measure enables the mechanism to determine where mechanical

constraints are located and to stay well within the workspace. The penalized manipulability

measure, wi
p, is the product of a penalty value, πi(qi) and the manipulability measure from

(2.4).

πi(qi) = 1− e
−κ

∏
j

(qij−li−
j )(li+j −qij)

(li+j −li−
j )

2

(2.5)

Here, li+j and li−j represent the upper and lower bounds on joint j, respectively, and κ is a

weighting factor that is tuned to determine how quickly manipulability drops off near the

joint limits. This penalty function is calculated for each finger, and is applied to determine

wi
p,
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wi
p = πiwi (2.6)

The two finger manipulability measures, wi and wi
p, are used as mechanics-based fea-

tures for mode detection in this work. We provide an illustration of these measures in Fig.

2.3, where it is important to note the similarities of the data distributions as properties of

the fingers change.

2.3.2 Grasp Quality Measures

A grasp quality measure based on the Grasp Matrix is utilized for representing the ma-

nipulability of the object, given the current contact configuration. The Grasp Matrix is

commonly leveraged as a representation for relating the velocity of the contact to the veloc-

ity of the object. Determined by the contact normal directions, in addition to the relative

location of the object’s fixed frame, the Grasp Matrix is formulated strictly by the geometry

of the object and the position of the contacts—force sensing is not required. The model has

a desirable quality that, even though the upper bound of its singular values is unbounded,

the minimum singular value has a lower bound of zero regardless of the dimensions of the

object. This occurs when two or more contact normals are collinear, parallel vectors with

respect to the object frame, O. This quality can be a be useful indicator for when the ob-

ject is likely to drop. A metric based off of singular values of the Grasp Matrix is therefore

invariant across systems of different dimensions.

The Grasp Matrix, G, in the velocity domain represents a map from external contact

velocities, ż, to object frame velocity, v. We can represent this as:

ż = GT v (2.7)

The shape of G is not absolute as it depends on the contact model used for manipulation.

In the planar case with a point contact model and c number of contacts, ż ∈ R2c, v ∈ se(2),

thus G ∈ R3×2c. Similarly, for the spatial case not covered in this work, ż ∈ R3c, v ∈ se (3),

and G ∈ R6×3c. In this work, we will assume a point contact with friction model, forming

the basis, bci , which states that a force can be applied along the x− and y−axes of the
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contact accordingly so long as it is within the friction cone. Additionally, we must calculate

the vector, pci , denoting the positional relationship between the contact frame, ci, for the

ith finger and the object frame, O. The rotational relationship, θδi , between the contact

frame, ci, and O is also computed. For the two-finger, two-contact case in this work:

bci =


1 0

0 1

0 0

 (2.8)

Rci =

cos(θδi) − sin(θδi)

sin(θδi) cos(θδi)

 (2.9)

pci =

pcix
pciy

 (2.10)

where θδi = θci−θO, and θci , θO are the angle offsets of the ith contact frame and the object

frame, respectively. Finally, with these calculated for each contact, we can formulate the

Grasp Matrix, G:

AdT
g−1

oci
=

 Rci 0[
−pciy pcix

]
Rci 1

 ∈ R3×3 (2.11)

G =

[
AdT

g−1

oc1

bc1 AdT
g−1

oc2

bc2

]
∈ R3×4 (2.12)

From G ∈ R3×4, there exist three singular values that describe the state of the contacts

with respect to the object. In our feature set, we will denote the maximum singular value

as gmax and the minimum singular value as gmin.

2.3.3 Hand-Object Manipulability Measures

The Hand-Object Jacobian [23] is a map that describes the relationship between actuation

input, q̇, and object velocity, v. Although this cannot be directly utilized in underactuated

hands, due to the inability to control each of the joints individually, i.e., dim(a) < dim(q),

it’s geometric representation of the hand-object system can provide insight as to where the
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object can move given the current hand configuration. This Hand-Object Jacobian, H,

assumes a point contact with friction model and is formulated by combining the Grasp

Matrix, G, and the Hand Jacobian, Jh. Let’s examine ẏ ∈ R2k, or the vector of all fingertip

velocities of the hand from (2.1). Let’s now also assume, that ẏ = ż ∈ R2k, the object

contact velocities from (2.7). Assuming a point contact with friction model, this further

suggests that the location of the contact does not move with respect to the object frame

during manipulation, and virtually attaches the finger to the object. With this assumption,

we combine (2.1) and (2.7),

v =
(
GT

)+
Jhq̇ = Hq̇ (2.13)

where
(
GT

)+
is the pseudo-inverse of the transposed Grasp Matrix. In the planar case with

two-links and two contacts, H ∈ R3×4. Here, the singular values of H represent how close

the hand-object system is to a singular configuration, i.e., the ability for the object to move

instantaneously in any direction. Similar to those used for G, we will use the maximum

singular value, hmax, and the minimum singular value, hmin, as features.

2.3.4 Curvature of Contact

As described by Montana [47], the geometric conditions of contact are important as they

enable differentiation between contact stability and spatial stability—necessary measures

to track during manipulation. To this end, we propose extracting the local conditions of

the contact point for both, the fingerpad and object.

The object point cloud, Po, and fingerpad point cloud, Pf , as further described in Sec.

2.5.3, are used for calculating the curvature at the contacts. Let’s require that the point

clouds are contiguous; that is, neighboring indices indicate neighboring points in the cloud.

Given Po(po) and Pf (pf ), determined by the KD-Tree to be the two closest points to one

another in separate clouds, we calculate the curvature of the contact by evaluating their

relationship to neighbors at each contact point. The curvature is therefore equal to the

reciprocal of the radius of the circle that fits three neighboring points in the same point

cloud. For example, let’s calculate the curvature for the object. Given neighboring points on
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the object, p−o = po − 1 and p+o = po + 1, we calculate the Euclidean distance between

each of the three sets of points, (Po (po) , Po (p+o) ,Po (p−o)) providing distances β1, β2,

and β3. Then,

βs =
β1 + β2 + β3

2
(2.14)

λ =
√
|βs (βs − β1) (βs − β2) (βs − β3)| (2.15)

ci
o =

β1β2β3
4λ

(2.16)

where ci
o from (2.16) is the curvature of the object at the ith contact point. We can similarly

calculate the curvature of fingerpad at the ith contact point. These curvatures are included

as mechanics-based features in this work to aid in determining object stability.

2.4 Bounding Feature Generalizability

The goal of this section is to investigate the bounds of which grasp mechanics-based features

are able to better estimate the state of the hand-object system as physical parameters of

the hand change, e.g., link lengths or spring ratios. We compare these bounds to a more

traditional feature set used for learning—the joint or motor configuration of the robot. This

is accomplished by modeling the mechanics of quasistatic, underactuated manipulation for

a two-fingered hand. After modeling, we sequentially vary parameters of the hand-object

system beyond that of its original symmetric configuration and run statistical analyses that

indicate whether or not the features likely come from similar distributions between different

hand variants. In order to maintain brevity and tractability of these results, this section

will focus on studying solely finger manipulability measures, and will leave the additional

features from Sec. 2.3 to be discussed in Sec. 2.7. Physical characteristics of the hand are

referenced in Fig. 2.4.
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2.4.1 Mechanics of Underactuated Manipulation

Underactuated hands can be modeled in terms of energy with kinematic, frictional, and

actuation constraints. That is, the configuration of the hand after actuation can be deter-

mined by solving for the minimum energy configuration objective,

U =
1

2

∑
i

∑
j

kij
(
qij − qij0

)2
(2.17)

where qij0 is the rest angle of each joint, qij is the current angle of each joint, kij is

the spring stiffness of each joint, and U is the total elastic energy of the hand. This is

formulated as an optimization problem, guided by both equality and inequality constraints.

The quasistatic moment about the finger’s proximal joint,M i
1, on finger i is created by both

normal, f iN , and tangential, f iT , contact forces,

M i
1 = ui1,eff × f iN + ui1,eff × f iT (2.18)

where ui1,eff is a vector from the proximal joint to the fingertip and × is the cross

product. In this formulation, we assume that the normal force vector extends along the line

joining both contact points to the object. We then define the moment at the finger’s distal

joint, M i
2, created by contact forces,

M i
2 = ui2,eff × f iN + ui2,eff × f iT (2.19)

where ui2,eff is a vector from the distal joint to the fingertip.

Through this analytical modeling of M i
1 and M i

2, we represent the moment balance at

the finger’s proximal joint,

0 = T iri1 − ki1∆qi1 +M i
1τ (2.20)

where T i is the force created by the tendon, wrapped about a pulley of radius ri1, k
i
1 is the

proximal spring stiffness, ∆qi1 = qi1−qi1,0 is the proximal joint angle w.r.t. its rest orientation,

and M i
1τ is the out of plane component of the proximal moment vector representing the
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Figure 2.4: (A) Annotation of hand parameters required for modeling underactuated ma-
nipulation mechanics. (B) Proximal and distal link lengths in simulation are changed by
the same value, ∆l, as to maintain unit length during simulation.

magnitude of its torque. We similarly model the moment balance at the finger’s distal joint,

0 = T iri2 − ki2∆qi2 +M i
2τ (2.21)

where ∆qi2 = qi2 − qi2,0 is the distal joint angle w.r.t. its rest orientation.

In addition to moment balance constraints, the forces applied to the object must be in

equilibrium with one another in order to maintain a stable grasp. That is,

0 = f1Nx + f1Tx + f2Nx + f2Tx (2.22)

0 = f1Ny + f1Ty + f2Ny + f2Ty (2.23)

where f iNx, f
i
Tx, f

i
Ny, and f

i
Ty are the x and y components of the normal and tangential

forces, respectively. During manipulation, we must also satisfy kinematic loop closure,

0 = ||u1B,eff − u2B,eff ||−do (2.24)
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where u1B,eff is the position of the left fingertip w.r.t the base frame, B, and u2B,eff is

similarly the position of the right fingertip. Here, do is the diameter of the object in contact

with the fingertips. The last equality constraint represents the tendon or transmission

constraint of underactuated mechanisms, dictating the coupled actuation between both

joints,

0 = ri1∆q
i
1 + ri2∆q

i
2 − ria∆ai (2.25)

where ria is the radius of the actuator pulley, and ∆ai is the difference between the resting

and set angle of the actuator. Finally, an inequality constraint on each finger must also be

satisfied such that contact normal and tangential forces satisfy Coulomb’s Law,

0 ≥ ||f iT ||−µo||f iN || (2.26)

where µo = 1 and is a conservative coefficient of friction estimate between rubber fingerpads

and a solid object [48].

From these constraints, which are guided by the mechanics of manipulation, we solve

for the equilibrated joint configuration, q∗, and contact forces on each finger, f iN and f iT ,

by solving the optimization problem,

(q∗, f iN , f
i
T ) = argminqU(q)s.t.(2.18)− (2.26) (2.27)

2.4.2 Mode Characterization in Simulation

Following these formulations, we create a simulation modeling the motion of an object given

an actuation input. Although our simulation can represent any underactuated two-fingered

hand-object variant, we decide to limit the parameter variation to just three characteristics

in order to maintain tractability of the results. Specifically, we begin with a symmetric two-

fingered hand (base variant) and sequentially change link lengths of the right finger, joint

stiffnesses of the right finger, and object diameters, while keeping object contact locations

constant. To avoid highly asymmetric cases, we choose to incorporate a variational term,

∆l, where, if this term is added to one link, it is conversely subtracted from the other in
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order to maintain unit length of the finger (Fig. 2.4).

We collect observations of the hand-object system when actuated and save two feature

sets of its state. Particularly, these feature vectors consist of both types of finger manipula-

bility measures in addition to the joint configurations of the hand. Concretely, we represent

these as feature sets, sm = (w1, w2, w2
p, w2

p) and sq = (q11, q
1
2, q

2
1, q

2
2) , which are then

both tagged with a mode of manipulation, as determined by the results of the optimization

process:

1. Drop - The hand is unable to provide force closure (i.e., when frictional fingertip

contacts can equilibrate an external wrench perturbation) on an object of 20 grams,

with gravity pointing into the manipulation plane.

2. Stuck - The object is no longer able to move in the direction dictated by actuation

forces, creating an excessively large internal object force. This normally occurs at

joint limits.

3. Sliding - The object exhibits sliding contacts when normal forces lie outside of the

friction cone, as determined by µo and fingertip forces from (2.27).

4. Normal - The object is manipulable within the gripper’s workspace and modes 1-3

are not satisfied.

We complete the simulation with a total of 867 hand-object variants. Each variant

is actuated with a total of 900 distinct actuation pairs, and from each pair, the two fea-

ture vectors and mode of manipulation is recorded. Table 2.2 provides a summary of the

simulated hand parameters.

Table 2.2: Simulated Hand Parameters

Symbol Value Symbol Value

l11 6cm ∆l [-2.4 – 2.4]cm (17 total)

l12 4cm do [2.0 – 6.0]cm (17 total)

k12/k
1
1 2.0 k22/k

2
1 [2, 2.5, 3] (3 total)

dp 6cm ri1/r
i
2 1.2
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2.4.3 Bounding Feature Distributions by Statistical Testing

The goal of this simulation is to provide general bounds by which grasp mechanics-based

features are able to better generalize to different hands compared to joint-based features.

More specifically, we approach this study by analyzing the data distributions of each of those

feature sets with respect to the modes realized within those distributions, while varying

hand-object parameters. It further follows that if mode distributions do not greatly change

between hand variants, we are likely able to better transfer learned models to other hands

without retuning or retraining with new data.

We perform this analysis by sequentially conducting a One-Way Multivariate Analysis

of Variance (MANOVA) test while increasing the difference between tested hand variants.

Due to this sequential testing, we adjust the p-value required to reject the null hypothesis

according to the Bonferroni correction method, starting with a value of 0.05 at the first

variation of testing. This analysis is conducted as follows: given an object diameter and

a right finger stiffness ratio, we select three hand variants—two with ±∆l, and one where

∆l is equal to zero (the base variant). We run MANOVA and according to the p-value,

decide whether to reject the null hypothesis. For this type of statistical analysis, the null

hypothesis tests whether the mode data from the three hand variants come from the same

distributions. If the p-value is less than the Bonferroni adjusted threshold, we can reject

the null hypothesis, meaning that there is sufficient evidence that the three hand variants

do not come from the same data distributions. Performing these tests for all simulated

hand-object variants, we compare the p-values of both the mechanics-based feature set, sm,

and the joint-based feature set, sq. The results are presented in Fig. 2.5.

These results indicate the general bounds by which hand properties can change without

varying the feature data distributions for each of the four modes of manipulation. More

intuitively, Fig. 2.5 shows that, when starting at the base variant (solid black cell), the

green cells are able to extend beyond that of the blue cells, where the green cells denote

mechanics-based features and the blue cells denote both, position-based and mechanics-

based features. Alternatively, red cells indicate hand variants where both null hypotheses

were rejected, i.e., neither feature sets can sufficiently represent the base variant’s data. ’
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Figure 2.5: MANOVA mode distribution testing of grasp mechanics-based features and
position-based features. Green cells generally indicate the extended bounds by which
mechanics-based features are able to transfer beyond that of their position-based coun-
terpart (blue cells). Red cells indicate that neither of the feature sets likely share data
distributions with the base variant (solid black cell).

In fact, while keeping the object diameter around that of the base variant, and while

holding the joint stiffness ratio static, ∆l can change by ±1.8cm without being statistically

significant from the other data distributions (Cell A in Fig. 2.5). Notably, this variation

cannot extend as drastically when the joint stiffness of the finger also changes. For instance,

while still rejecting the position-based null hypothesis, we are only able to change ∆l by

±0.6cm comparatively, but this is when we increase the joint-stiffness ratio from 2 to 3

(Cell B). These two cells, interestingly, have similar p-values of 0.07 for sm.

This depiction serves to broadly represent the extent of the generalization bounds by

analyzing various cells, like Cell C where we can reject both null hypotheses, and Cell D

where we cannot reject either of the null hypotheses according to their p-values. While this

analysis is not definitive in that it does not necessarily directly transfer to more advanced

non-linear learned regression models, it provides a general basis for understanding the added

utility of the mechanics-based features from a statistical, data-distribution perspective, and

we use this concept to motivate the continuation of this work.
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2.5 Self-Supervised Tagging and Object Reset

Beyond that of statistical evaluation, we seek to test the reliability of mechanics-based

features empirically on a physical hand-object system to further analyze their applicability

in real-world environments. We employ such experimentation on an underactuated Yale

OpenHand Model T42 [49], that is not equipped with joint encoders or tactile sensors at

the fingertips. Due to this limitation, we must reformulate the definitions of the four modes

of manipulation:

1. Drop - The hand-object configuration is in a state where the object is just about to

drop and will drop shortly thereafter the commanded next actuation.

2. Stuck - The object is no longer able to move in the commanded actuation direction

due to the hand-object configuration of the gripper, or the joint has reached a physical

hard stop.

3. Sliding - The object exhibits a sliding contact with respect to the gripper’s distal link,

i.e., mechanical rolling contact conditions are not satisfied.

4. Normal - The object is manipulable within the gripper’s workspace while maintaining

a rolling contact, and modes 1-3 are not satisfied.

2.5.1 Manipulation Primitives

The Model T42 is underactuated and thus mechanically compliant, which enables passive

reconfiguration post-contact and mitigates potential overconstraint as in a fully actuated

hand. This compliance is advantageous for manipulation, as it enables the hand to recon-

figure with noisy or imprecise control input. Though due to the nature of this mechanism,

we cannot control all degrees of freedom of the object simultaneously, but a 2D submanifold

of the object’s 3D configuration space. We employ manipulation primitives on the hand by

generating an approximated Jacobian for an arbitrary object that relates to the velocity,

v = [vx, vy, vθ]
T , of the object frame, O ∈ SE (2), to an actuation velocity, ȧ = [ȧ1, ȧ2]

T ,

all with respect to the base frame, B ∈ SE (2) [50]. These primitive actuation sequences
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are estimates of the true Jacobian, and are selected according to the commanded Cartesian

velocity reference in the x−direction, vx, and in the y−direction, vy (Fig. 2.6).

Figure 2.6: Simple manipulation primitives enable planar motion within the workspace of a
Yale OpenHand Model T42 gripper. These primitives enable the object to move up, down,
left, or right depending on the Cartesian velocity reference, v.

2.5.2 Geometric Hand-Object Representation

The geometric representation of a hand-object system can generally be extracted through

various sensing modalities, e.g., cameras, tactile sensors, and joint encoders or IMUs. Albeit,

not all hands are equipped with such capabilities, as these types of sensors are generally

not required for grasping with compliant hands. Thus, in this work, we focus on a vision-

based approach with a fixed overhead camera (30Hz). During manipulation, the gripper

configuration is tracked via ArUco markers [51] attached to rigid links of the hand. A priori

knowledge of the hand includes the number of finger links, the object geometry, and the

geometry of the fingerpads. Principally, the camera pose w.r.t. the task can vary, as long as

the markers are visible by the camera sensor such that the 6D pose of the attached markers
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can be tracked, e.g., offset from a robot wrist or on another robot.

The state of the contacts is tracked, which subsequently allows the system to detect

sliding during manipulation (Sec. 2.5.3), by superimposing a 2D point cloud on both,

the fingertips and the object, with respect to the marker frames attached to each. As the

hand-object configuration changes during actuation, fundamentally changing characteristics

about the grasp such as the effective link length, the superimposed 2D point clouds are

tracked and analyzed. We solve for the contact location between the fingerpad and the

object by querying a KD-Tree constructed with the object’s point cloud.

2.5.3 Self-Supervised Mode Detection

All four modes described in this work can be detected solely by an overhead camera that

monitors the hand-object state during manipulation. This observation forms the basis of

our self-supervised learning approach, where we can monitor features of the hand and of

the object to determine and autonomously tag the current mode of manipulation.

1. Detecting Drops: Drop detection is achieved by recording the state history of the

object during manipulation. Simply, if the object marker is no longer within the

manipulation plane, or the marker is currently absent from visual detection, the object

is declared to be dropped. To reduce the potential for drop detection error, the history

over the past 10 frames (0.3 seconds or two hand actions) is used to determine such

occurrences, whereas this threshold is tuned heuristically during the experimentation

setup. If this condition is satisfied, the system accesses the recorded state of the

gripper 10 frames prior (directly before the object was dropped) and self-tags a drop

observation. The object is then reset via an object reset system (further described in

Sec. 2.5.4) and manipulation continues.

2. Detecting Stuck: The object is considered stuck if it is no longer manipulable in the

direction desired, which is determined by the current Cartesian velocity reference.

Typically, this mode occurs when both fingers reach hard stops, limiting additional

manipulation towards the palm (Fig. 2.2). Alternatively, stuck cases are also detected

when the current configuration of the hand-object system is not able to reconfigure,
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limiting the movement of the object in the reference direction. When stuck is detected,

the system self-tags an observation and the object is reset via an object reset system

(Sec. 2.5.4) for manipulation to continue.

3. Detecting Sliding: Sliding is the most difficult of the four modes to detect and is done

so when kinematic rolling conditions cannot be satisfied. In order for one surface to

be considered rolling on top of another, we choose to track two of the three sliding

constraints—the position of the point of contact and the velocity at the point of

contact must be the same between the two bodies [52].

Consider the scenario depicted in Fig. 2.7. Here, for the planar case, O ∈ SE(2)

is the object frame and F ∈ SE (2) is the finger frame. To maintain generality,

F can be either finger frame, where the left and right finger frames are F 1 and F 2,

respectively. By parameterizing the object and the fingerpad surface locally in O and

F, respectively, we effectively develop a point cloud for the object, Po ∈ RN× 2, and

for the fingerpad, Pf ∈ RN× 2, where the interacting array index from the object

point cloud is po and the interacting array index for the fingerpad point cloud is

pf , as determined by the KD-Tree. The value for N can be arbitrarily assigned

such that points sufficiently cover the surface of the fingerpad and the object. For

clarification, in the object point cloud, the location Po (po) ∈ R2 is in contact with

point Pf (pf ) ∈ R2 from the fingerpad point cloud. Let’s consider that the location

of O is xo = (Ox, Oy) ∈ R2, and the location of the F is xf = (Fx, Fy) ∈ R2, both

with respect to B. We denote the 2D rotation matrices Ro and Rf for these respective

frames. It follows the elementary consideration that the location of the contact point

on the object (xco), that is with respect to the base frame, can be calculated as,

xco = xo +RoPo (po) (2.28)

and is similarly calculated for the fingerpad, denoted xcf . To satisfy the positional

constraint of a rolling contact, within some user-defined threshold, ϵp, the following
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must be valid:

xco − ϵp ≤ xcf ≤ xco + ϵp (2.29)

The velocity constraint can be similarly constructed, where we can differentiate the

two positions, xo and xf , with respect to time to form ẋo and ẋf . Since the body

rotations are also functions of time, we must also differentiate body rotations of the

object and fingertips to form velocity dependent rotation matrices, Ṙo and Ṙf (see

[52]). We can then solve for the velocity of the object contact about the base frame,

ẋco, by,

ẋco= ẋo + ṘoPo (po) (2.30)

We similarly calculate ẋcf . Given the velocity threshold, ϵv, we develop our final

constraint:

ẋco − ϵv ≤ ẋcf ≤ ẋco + ϵv (2.31)

Thresholds ϵp and ϵv are tuned heuristically according to the frequency of the camera

and the accuracy of contact point estimation. If constraints (2.29) or (2.31) do not

hold, it further implies that sliding occurred at the contact. Upon detection, the state

of the system is self-tagged and manipulation continues without object reset.

2.5.4 Standardizing Object Reset

Collecting training data for dexterous manipulation is a labor-intensive process, as constant

monitoring and manual intervention is frequently required to reset the system due to object

drops during manipulation, or from other undesired system scenarios, e.g., actuators at

torque limits. Moreover, during reset, it is unlikely that a human can completely standardize

the initial grasp of the object, as a human placing the object within the grasp may often

cause undesired deviations in the initial pose of the object before manipulation. In order
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Figure 2.7: Sliding contacts are detected by verifying rolling contact constraints cannot be
satisfied. In this depiction, we track the velocity of the hand-object contact points and
ensure they are within some normed threshold between each other.
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to collect data in a self-supervised manner, we fabricated a system to autonomously and

precisely reset the object as to standardize the initial grasp before manipulation.

The automated reset system (Fig. 2.8) is comprised of an object crane and a stabilization

beam with an affixed magnet on the end. For each of the objects tested, two magnets were

affixed to opposite sides of the body and a lightweight fishing line was strung through the

center. During the case of object drop or stuck, the crane raised and the stabilization

arm was lowered to the reset position as to adhere to the object magnets. Once the hand

reacquired the grasp, which is standardized due to the positioning of the magnets, the

stabilization beam lifts out of the way and the crane lowers. This provides slack to the

connection between the crane and the object, and allows the hand to freely manipulate the

object once again.

Figure 2.8: An object crane and stabilization beam with affixed magnets accurately resets
the object into the same configuration for each trial. This allows us to sequentially collect
large amounts of data for training.
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2.6 Data Collection

We design gripper variants that are generally within the bounds identified in Sec. 2.4 and

test the applicability of mechanics-based features empirically, as to evaluate their robustness

in physical environments. In a self-supervised manner, we autonomously collect and tag

data on 6 gripper variants—one variant for training and five for testing. Once a grasp is

acquired after reset, the object was manipulated with randomly selected Cartesian velocity

references that operated for a period between 0.5 and 2.5 seconds. A “normal” observation

was collected once no other mode was detected for more than 5 seconds. The self-supervised

training data was first collected online, randomly selected as to adhere to the leveling of

the data distributions, and was then trained and tested offline.

A total of six 3D Printed ABS objects of negligible weight (∼20g) and differing ge-

ometries in the manipulation plane were created for experimentation (Figs. 2.9, 2.10). The

center of each object contained a hole where the object crane was attached. For each object,

magnets were affixed to opposite ends as to enable attachment to the stabilization beam

for object reset. In the training data, only four objects were used. The other two objects,

the oval and the pear, were used as novel test objects.

Training data was collected with a single, symmetric Model T42 gripper variant (PL-PL)

with Dynamixel RX-28 actuators. This naming convention signifies a “pivot-long proximal

link, and a pivot-long distal link” configuration. From four objects, the two rectangles

and the two circles, a total of 3500 modes were collected for training, with an equal mode

distribution over each of the objects: 1000 normal, 1000 drop, 1000 stuck, and 500 sliding.

Data was tagged and collected until the minimum for each mode was fulfilled. Afterward,

overflow mode observations were selected randomly and excluded from the observation set.

It is important to note sliding only occurs on objects with flat surfaces, i.e., the rectangular

objects (Figs. 2.2, 2.9). Therefore, the number of sliding points recorded for each variant

was determined by which type of objects were used during collection. The training data

workspace is presented in Fig. 2.11. We note that, generally, the mode regions are symmetric

about the central axis of the gripper.

Testing data was collected by equipping the hand with 5 different finger configurations
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Figure 2.9: Manipulation was performed on 6 different gripper variants. The base variant
used in training, the symmetric PL-PL gripper, was evaluated with four different objects
(small circle, large circle, small rectangle, and large rectangle). A total of 3500 points for
training were collected for the four identified modes. The five test variants (PL-PS, PS-
PL, PL-PLsq, PS-FL, and PS-PS-PS) then performed manipulation with two of the six
test objects. Two novel objects were added in testing (medium oval and medium pear).
During manipulation, 50 occurrences of each mode were collected for each gripper-object
combination. A quarter is placed next to the objects for size reference. *Sliding only occurs
with rectangular objects, therefore limiting the number of sliding cases.
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Figure 2.10: Six objects were used for testing and training. In the manipulation plane,
object geometries are classified either as a circle, rectangle, oval, or pear.

Figure 2.11: Depicting regions of the workspace where modes typically occur. Markers
indicate the centroid of the object when a mode was detected. We note the symmetry of
this illustration, were modes typically occur mirrored across the central axis of the gripper.
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(Fig. 2.9). Variations incorporated changes to the link lengths, fingerpad curvatures, joint

types, actuator models, and the number of links compared to the original PL-PL setup. The

five variants included PL-PS and PS-PL fingers (Dynamixel RX-28), and PS-FL, PL-PLsq,

and PS-PS-PS fingers (Dynamixel XM-430). Different joint stiffness ratios were observed

for the PS-FL and PS-PS-PS setups compared to the other four variants. Additionally,

the distal hard stop was 70° for the PS-FL variant, and the two hard stops were 60◦for

the PS-PS-PS variant, compared to all other variants with a distal hard stop of 90◦. In

each of the five variants used for testing, a total of 50 observations were collected for each

mode-object pair. Since in most cases two objects were tested and only one object recorded

any sliding, we recorded 100 normal, 100 drop, 100 stuck, and 50 sliding for each variant.

More formally, during data collection we form a feature set, S, comprised of features

from Sec. 2.3, and a class set, R, while manipulating the objects. Denoted by,

sn = (vx, vy, ,w
1, w2, w2

p, w2
p,gmin,gmax,hmin,hmax, c

1
f , c

1
o , c

2
f , c

2
o) ∈ R14

an input feature, and

rn = (m) ∈ normal, drop, stuck, slide

an output feature. The dataset is defined as,

S = {sn}n=1:M R = {rn}n=1:M

where its size, M, has the same number of normal, drop, stuck, and sliding cases for each

gripper-object combination.
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2.7 Experiments

2.7.1 Classifier Identification and Observation Reduction

We were first interested in obtaining the best cross validation score given the training

feature set,
(
Strain ∈ R3500×14,Rtrain ∈ R3500

)
, of the symmetric PL-PL setup. In the self-

supervised learning approach taken in this work, we evaluated three different predictive

models: Random Forest (RF) [53], Support Vector Machines–linear kernel (SVM-l), and

Support Vector Machines–radial kernel (SVM-r) [54]. We chose these three classifiers for

their extended use in the robotics literature, and due to the fact that other classifiers, e.g.,

Neural Networks, likely need more data than what was collected in this work. To determine

the best classifier for this data, we performed a five-fold cross validation on the training

dataset using each classifier. As presented in Table 2.3, the RF classifier performed the

best, with an accuracy of 92.3% for all four modes, followed by 88.6% (SVM-r) and 85.4%

(SVM-l). For the RF classifier, we calculate a classification accuracy of 85%, 94%, 95%,

and 86% for the normal, drop, stuck, and sliding cases, respectively. We note that drop

and stuck cases are often classified with higher accuracy than sliding and normal cases.

This quality is advantageous as it allows the system to more correctly avoid potentially

hazardous modes to stay well within the workspace. For the remainder of this work, we

evaluate classification with the RF classifier by building 50 weak learners (shallow trees of

depth 10) split according to a Gini impurity measure and averaging each tree’s prediction

to determine mode classification.

We were interested in how much data was required to maintain high classification accu-

racies via self-testing. Using all 14 features from sn and the RF classifier, we split the data

into two sections: one with 2800 observations (training) and the other with 700 observations

(testing), all while keeping the number of modes in each balanced. We continually reduce

the number of data points in the training set by 100, removing observations randomly, and

test on all 700 test observations. After training the classifier once observations were sequen-

tially removed, we note that the classifier performs similarly with 1200 observations as it

does with 3500 observations (accuracy reduces by 3.4%). This 1.7:1 data ratio underscores

that sufficient data was collected via self-supervision (Fig. 2.12).
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Figure 2.12: Validation of training data size by reducing observations.

Table 2.3: Five-Fold Cross Validation Scores on Training Set

Classifier Random Forest SVM-Linear SVM-Radial

Score 92.3 ±0.4% 85.4 ±0% 88.6 ±0%

2.7.2 Classification Accuracy

For the remainder of our analysis, the RF classifier was trained with all 3500 data points

using the symmetric PL-PL gripper variant. The particular test set, (Stest,Rtest), was

changed according to which of the five gripper variants was being tested.

Using all 14 features from sn, each of the test grippers were evaluated individually (Fig.

2.13). The classification accuracy of the PL-PS and PL-PLsq variants were highest, with

a classification accuracy of 90.6%. The second highest classification accuracy was realized

in the PS-PL variant with an accuracy of 85.1%. As provided in the decision matrices in

Fig. 2.13 (leftmost column), the PL-PS variant was able to classify normal, drop, and stuck

with 84%, 97%, and 99% accuracy, respectively. Classification for sliding dropped to 72%,

where it had difficulty distinguishing from the normal mode. The PL-PLsq variant did not

have sliding modes, since data was not collected with rectangular objects. Therefore, the

lowest classification accuracy was observed with the drop mode (80% accuracy).
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This high misclassification of drop is interesting, as it is significantly lower than other

variants (97%, 93%, 96%, 88%) with the same feature set. This can be largely attributed

to the shifted workspace of the PL-PLsq gripper. As provided by the workspace plots in

the rightmost column of Fig. 2.13, compared to the other variants, the modes detected for

this variant are shifted to the left of the workspace. Additionally, many drop cases seem

to occur in the middle of the workspace, where normal classification would typically be

predicted. This artefact is due to the differing geometry of the fingerpad, as it was difficult

for the finger to manipulate on the right side of the workspace since the “sharp” edge of

the finger prevented a rolling contact to the tip of the finger.

Of the other gripper variants, the 3-link PS-PS-PS performed the worst with a total

classification accuracy of 79.8%. In general, for all variants, predicting sliding was difficult

as without tactile sensors and with differing friction within the joints of the fingers, the

classifier struggles to determine forces applied at the contact point.

2.7.3 Feature Reduction

A benefit of the Random Forest classifier is its ability to inherently provide “feature im-

portance measures”, or values that signify how much each feature contributed to the clas-

sification decision—providing intuition as to which features were most important during

manipulation. In this work, we use a Gini impurity measure to calculate this importance

metric, which is a standard often used in ensemble tree classifiers. It works as follows: once

a random set of features are selected to determine a split, the Gini impurity represents

the likelihood that an accurate classification is predicted given a random class from the

distribution of labels. As these splits are calculated for each tree in the forest, the impor-

tance measure averages the Gini measures for each split and further signifies the feature’s

importance, or more generally, how much “purity” they contributed to the forest. Feature

importance measures are reported in Fig. 2.14, where we note that the largest contribu-

tion to classification success is attributed to the y−axis Cartesian velocity reference (vy),

finger manipulability measures (w1,w2), and the penalized finger manipulability measures

(w1
p,w

2
p).

Using the feature importance measures, we define 3 feature sets (FS1, FS2, FS3) con-
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Figure 2.13: (Left three columns) Confusion matrices for each gripper variant given dif-
fering feature sets (described in Sec. 2.7.3). (Right column) Object centroid position for
modes detected within the workspace of each gripper variant. (Light Blue-Drop, Dark Blue-
Normal, Yellow-Stuck, Red-Sliding)
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Figure 2.14: Feature importance measures provided by the Random Forest Classifier via
Gini impurity. Features in blue are included in Feature Sets 1,2,3, features in red are
included in Feature Sets 1,2, and features in green are included in Feature Set 1. See Table
2.4.

sisting of 14, 9, and 5 features, respectively, to further test classification (Table 2.4). By

testing accuracy with each feature set, we can provide greater intuition as to what features

were most important. The results from this analysis are reported in Table 2.5. and Fig.

2.13. Note that the results from FS1 were previously described in Sec. 2.7.2.

After feature reduction, some variants such as PS-PL (FS1: 85.1%, FS2: 85.0%, FS3:84.4%)

and the PL-PLsq (FS1: 90.6%, FS2: 89.2%, FS3: 87.6%) provided consistent classification

scores even with the reduction of features. Interestingly, the PS-PS-PS variant obtained

nearly the same accuracy between FS1 (79.8%) and FS2 (79.0%), even with the reduction of

5 total features (14 features to 9 features). The PS-FL sees a sharp decrease in classification

from FS1 to FS2, but then maintains a similar classification accuracy for FS3. What is also

interesting to note, while the overall accuracy of the PL-PLsq decreases, the drop accuracy

increases with the reduction of features (FS1: 80%, FS2: 90%, FS3: 95%).

Of the five gripper variants tested, the PL-PLsq maintained the best classification score.

This success is likely attributed to two things. First, this variant, dimensionally, is the
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Table 2.4: Feature Sets Determined by Feature Reduction

Feature Vector

Feature Set 1 (FS1) sn = (vx, vy,w
1,w2,wi

p,w
2
p,gmin,gmax,hmin,hmax, c

1
f , c

1
o , c

2
f , c

2
o)

Feature Set 2 (FS2) sn = (vx, vy,w
1,w2,w1

p,w
2
p,hmin,hmax, c

1
o)

Feature Set 3 (FS3) sn = (vy,w
1,w2,w1

p,w
2
p)

Table 2.5: Classification Accuracy with Differing Feature Sets

Variant Feature Set 1 Feature Set 2 Feature Set 3

PL-PS 90.6 ±1.2% 87.9 ±0.9% 84.1 ±1.6%
PS-PL 85.1 ±0.9% 85.0 ±1.1% 84.4 ±2.1%
PL-PLsq 90.6 ±2.2% 89.2 ±1.2% 87.6 ±1.4%
PS-FL 84.8 ±1.8% 78.3 ±2.4% 77.6 ±1.6%

PS-PS-PS 79.8 ±0.7% 79.0 ±1.3% 70.0 ±0.8%

closest variant to the original PL-PL used in training, as the only difference is the squared

fingertip on the right finger. Second, this variant was tested with two rounded objects

(circle and oval), and therefore no sliding occurred during manipulation, which is normally

the most difficult to classify. While evaluated variants that were tested with sliding cases,

the PS-PL performed the best with a total classification accuracy of 84.4% (FS3). This

variant also had the highest sliding accuracy among any of the five variants throughout all

features sets, which can likely be attributed to the fact that this variant has the same distal

link as the training PL-PL variant. The PS-PS-PS gripper variant performs the worst of the

five variants—this variant has a more limited workspace due to the hard stops at 60◦at each

of the links. Additionally, sliding only occurs on the left side of the workspace, since the flat

surface of the right most-distal link rarely comes in contact with the object. As depicted

by the confusion matrices in Fig. 2.13, in general, as the number of features is reduced,

the ability for the system to accurately predict sliding greatly reduces. For example, in the

PS-PS-PS variant for FS1, the classification for sliding is 66%, but in FS3 the accuracy is

just 4%. This is a fairly specific case, as the classification accuracy for sliding only differs

from a maximum of 12% for the three other gripper variants (from FS1 to FS3).

As previously discussed, the rightmost column of Fig. 2.13 provides workspace plots for

the 5 test gripper variants. Plotted points depict the centroid of the object when a mode
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was detected. While tested objects were of various geometries, this plot generally presents

where modes were likely to occur within the workspace. It is interesting to note how the

“regions” for different modes change according to the gripper variant, especially how varied

they are compared to the training hand, PL-PL, in Fig. 2.11. For example, sliding only

occurred on the left side of the workspace for the PS-PL and PS-PS-PS variants, and a large

number of drop cases occurred in the middle of the workspace for the PS-FL variant. These

workspace plots underscore how, where the joint configuration and object center location

inside of the workspace is important, the properties of the hand-object system must be

accounted for in order to accurately predict modes of manipulation.

2.7.4 Single-Component Feature Reduction

As stated in Sec. 2.7.2, some variants were not as susceptible to higher classification errors

given feature reduction techniques, while others were more affected. It was our interest to

perform feature reduction techniques by removing one feature at a time, instead of in sets,

as to validate our approach. We begin my removing features from least important to most

important according to the measures presented in Fig. 2.13.

The results to this feature reduction are presented in Fig. 2.15. While performing

this task on the PL-PL variant with a total of 3500 observations, we note that the cross-

validation accuracy remains around 93% while having 9 or more features. Thereafter, when

only 8 features remain, the accuracy drops to 87% and continues until 5 features remain.

Once only 4 features are used for classification, the accuracy starts to decline, as it is difficult

to determine the decision boundary. This feature reduction test validates the decision for

14, 9, and 5 features for FS1, FS2, and FS3, respectively (Sec. 2.7.3), as these are volatile

intervals when accuracy will likely drop.

2.7.5 Online Classification

Detection of modes, and their associated regions, are somewhat fluid (as presented by

the workspace plots) and in general, we are interested to see if modes can be successfully

predicted online to promote safe manipulation. We implemented this RF prediction model in

an online framework to evaluate classification accuracy with two novel gripper variants not
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Figure 2.15: Five-fold cross validation accuracy of the PL-PL training variant. Features
were reduced one at a time subject to their classification accuracy contribution (see Fig.
2.14).

evaluated in the previous sections (Fig. 2.16). The first variant was tested with the medium

oval and consisted of a PS-FL left finger and a PS-PS-PS right finger. The second variant

was tested with the small rectangle and was comprised of a PS-FL left finger and a PL-PS

right finger. As before, the mechanics-based features used for testing were extracted online

using markers attached to rigid links of the hand. The gripper was commanded through

random Cartesian velocity references for a period between 0.5-4.0 seconds to attempt to

cover the entire workspace. Once a mode other than normal was detected for a period

between 0.1-1.0 seconds, the Cartesian velocity reference changed randomly to either stop

manipulation or guide the object back towards the middle of the workspace.

Online classification using the first novel variant properly classified modes normal, drop,

and stuck within its workspace for the oval object. In addition to these three modes, the

second variant also included the “sliding” mode. To test the efficacy of this online detection,

the classifier was run on each hand 5 times for 5 minutes. Cartesian velocity references

were selected randomly, with a goal of remaining within the manipulable region of the

gripper. For the first variant, 3 out of the 5 executions were successfully run for a total of

five minutes. The object was manipulated safely within the workspace and was diverted

towards the center of the workspace when a mode other than normal was detected. For the

other two executions, a dropped object was detected at 3 minutes 21 seconds and 4 minutes
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5 seconds. For the second variant, 4 out of the five executions successfully completed 5

minutes of manipulation. The final failed execution successfully manipulated the object for

2 minutes and 34 seconds. This failure was due to the amount of sliding the object had

undergone without detection 12 seconds before task failure.

Figure 2.16: Online classification of two novel gripper variants. The arrow signifies the
Cartesian velocity reference and the text (Drop or Sliding) signifies the predicted mode.
(Left) A PS-FL left finger and a PS-PS-PS right finger perform manipulation and the
online classifier predicts a drop will occur given the Cartesian velocity reference. (Right) A
PS-FL left finger and a PL-PS right finger predicts sliding will occur during manipulation.

2.8 Discussions

In this chapter, we showed that by learning from mechanics-based features, which represent

high-level properties of the hand-object system, we were able to successfully transfer mode

prediction accuracies between different gripper variants. We first provided bounds by which

mechanics-based features were likely to better transfer than their joint-based counterparts.

We then tested this notion physically with different hand variants. Specifically, the 92.3%

five-fold cross validation accuracy of the training variant was marginally greater than the

90.6% classification accuracy of the PL-PLsq and PL-PS variants. However, we did note

that these features presented shortcomings in accurately predicting sliding when stiffness

ratios changed between variants. Additional sensing modalities such as tactile sensing at

the fingertips would likely be beneficial for classification.

The features included in FS3, or the set containing finger manipulability measures, con-
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tribute the most to the success of the classifier (75.2% of the Gini impurity measure). The

vy component benefits classification in that, according to the workspace plots, it likely dis-

criminates between the drop, normal, and stuck regions as the y−position component passes

through all three. When coupled with the finger manipulability measures, these values to-

gether determine where the object is within the workspace and where it is headed, and in

general, the hand-object configuration. It is our belief that the other features defined, such

as singular values of the Hand-Object Jacobian and the contact curvatures, are important

for stable manipulation capabilities when fingerpad curvatures change more drastically, or

different gripper types (underactuated vs. fully actuated) are observed.

This work elucidates the beginning of what we consider a promising approach for learning

models in dexterous manipulation. While we recognize the drawbacks and inaccuracies

in predicting sliding as the gripper becomes more asymmetric, this approach has proven

to be successful for the other three modes, and was completed without the use of tactile

sensing. Although conceptually backed by simulation, the majority of our analysis consisted

of data that was collected physically, which allows us to capture uncertainties of the real

world. In future work, we plan to investigate this approach further by extending this sort

of classification to the spatial manipulation case, investigating how time series data aids in

prediction accuracy (e.g., HMMs), further modeling this approach for deformable contacts

and objects, and testing such methods on more commercial, readily-available robot grippers.

Furthermore, we are interested in how adding single unit tactile sensors at the fingertips

may be beneficial in detecting sliding cases when using different gripper variants.

While this approach of using mechanics-based features for learning dexterous manipu-

lation can be applied to any hand design, it is particularly useful for soft, compliant, or

underactuated hands that typically do not have tactile sensors or joint encoders. Fundamen-

tally, dexterous manipulation extends the workspace of the manipulator and is a valuable

tool for the future of robotics in society. We hope that the robustness demonstrated by

testing different gripper variants encourages researchers to search for features that represent

higher-level properties of the system for a more enlightened discussion on learning system

models.
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Chapter 3

Controlling a Compliant Hand for

In-hand Manipulation

3.1 Introduction

Dexterous manipulation is often characterized as the ability to reposition or reorient the

object frame with respect to the hand frame [1]. Much work has addressed such an issue,

providing generalized models that describe object frame trajectories given joint actuation

velocities [21]. In many cases, however, the object frame is not necessarily the point on

the object in which is desired to control. For example, in the task of handwriting, the

position of the marker tip, which we denote as the manipulation frame, generally defines

the precision of the inscribed character. In such a scenario, the controlled dimensions of

the manipulation frame are purely translational, where we can largely relax the rotational

constraint of the marker tip as to extend the task workspace. In other contexts, it may be

required that purely rotational or even mixed trajectories are desired for task completion.

In this chapter, we build off the observation that many tasks require control about a

partially constrained manipulation frame trajectory. In such cases, object (or grasp) frame

trajectories in SE(3) can be either difficult or impossible to analytically compute due to the

absence of a one-to-one mapping, especially in an underactuated system where the hand’s

joint configuration is subject to both, kinematic and energy constraints. We propose an
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MPC-inspired control framework that utilizes an object-agnostic manipulation model and

an energy-based propagation (or system dynamics) model of the hand. We differentiate

between the controlled dimensions and the free dimensions of the manipulation frame,

which can be any combination of dimensions in SE(3).

Given a desired manipulation frame trajectory, a bidirectional initialization assumes the

mobility of the hand is sufficient for the grasp frame to mimic the transformed trajectory

for the next timestep, while leaving the free dimensions constant. By querying the learned

model with this initialization, the resultant output is evaluated in a system propagation

model. We repeat this process through a receding horizon to build the initial control

trajectory. During this initialization, it is likely that the trajectory is inaccurate due to the

limited mobility imposed on the mechanism by the closed kinematic chain. This issue is

accounted for by optimizing grasp frame reference velocities in order to minimize trajectory

error. We evaluate executions of various trajectories (translational, rotational, and mixed)

with different control horizons and optimization iterations, and compare the results. In this

work, we largely disregard object stability analyses due to the use of a compliant mechanism.

The contributions of this chapter are twofold. First, we propose an optimization ap-

proach that extends the control capabilities of a generalized manipulation model, bypassing

the need for task-specific training or modeling. Secondly, we underscore the advantage of

using MPC for in-hand manipulation, which allows the system to recover from inaccurate

system models or unmodeled contact scenarios. In the continuation of this chapter please

refer to Table 3.1 for nomenclature.

Table 3.1: Chapter 3 Nomenclature

Symbol Description

q Particular hand configuration: q ∈ R6

a Configuration of the actuators: a ∈ R3 where ȧ denotes velocity

E(q) Potential energy of the system in a specific joint configuration q

X Pose of the Grasp Frame: SE(3)

T Contact triangle relationship: (T1, T2, T3) ∈ R3
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3.2 Related Work

Analytical Modeling for Manipulation

Many works have approached dexterous manipulation with various levels of analytical

modeling–from contact models [55] and fingerpad curvature models [47], to hand kinematic

models [56] and whole hand-object system models [21]. Many powerful relationships have

been formulated with such mathematical rigor. Although, the accuracy and efficacy of these

models is highly subject to model parameters, which may be known a priori in structured

settings, or may need to be estimated during manipulation via sensors on the hand, e.g., to

leverage slip [18]. Some of these problems are nullified when using underactuated, adaptive

hands that inherently reconfigure to uncertainties such as noisy control inputs or model-

ing errors [57]. Nevertheless, dexterous manipulation with such hands remains difficult to

model as the output space is typically of higher dimension than the input space.

Learning for Manipulation

To overcome uncertainties in the analytical models, learning for manipulation–both model-

based [58], [38] and model-free approaches [59]–has become popular as this approach is able

to intrinsically estimate model parameters without user intervention. Consequentially, data

for such approaches generally becomes too large to collect physically and must be done in

simulation [60]. This caveat can be mitigated by relaxing the control dimensionality and

constraints of the task, e.g., using a soft, compliant, or underactuated hand. While these

hands are difficult to explicitly model, various works have introduced methods for closing

the control loop through vision [61], [62] or through tactile sensing [63]. These works,

however, focus mainly on the motion of the object/grasp frame and not on a generalized

manipulation frame attached to the object.

Control for Manipulation

Control for manipulation has been similarly approached from various avenues–with meth-

ods based purely on kinematics [64], tactile sensing [65], and visual servoing [66], [67]. It

is also possible to combine sensing modalities for additional control, e.g., for grasp adap-
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tation [68]. However, each control approach is contingent on which sensing modalities are

available. For example, underactuated hands are typically not equipped with joint en-

coders or tactile sensors, therefore, vision has become popular. In [69], joint configuration

estimation was achieved through the use of particle filters and vision, therefore allowing

more advanced control without the need for joint encoders. Regardless of these previous

approaches, no works have embedded MPC with learning for controlling spatial trajectories

with an underactuated hand.

3.3 Devising a Manipulation Model

In this section, we present an approach to learning the manipulation model of an un-

deractuated hand through an energy-based perspective [61]. Throughout this letter, we

assume all hand and object motions are quasistatic and the weights of the objects used are

negligible–disregarding the need to explicitly model dynamics or object-specific properties,

e.g., inertias. Moreover, we leverage a compliant end effector as these mechanisms are ben-

eficial for maintaining stability of the hand-object system during manipulation, mitigating

concerns of losing contact [57], [69].

3.3.1 The Grasp Frame

The establishment of the grasp frame generalizes the geometric properties of an arbitrary

object within a grasp [70]. Fundamentally, it portrays the local geometry of the object and

standardizes the representation of the object frame (Fig. 3.1, 3.2). We will reference the

object frame as being one in the same as the grasp frame, as we expect object weights to be

negligible. Assuming a single non-rolling contact is maintained on each fingertip of a hand

with k fingers, let us define contact points P = p1, . . . , pk where pi ∈ R3,∀i ∈ {1, . . . , k}

with respect to the hand frame. Noteworthily, with non-rolling contacts, any 3 points in P

can explicitly define the grasp frame. For simplicity, let’s assume p1, p2, and p3 are used.

Then, we can define the grasp frame pose, X ∈ SE(3), by Gram-Schmidt orthogonalization,
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X = [Gx,Gy,Gz|Go] ∈ SE(3)

Go =
1

3
(p1 + p2 + p3)

Gx =
p2 − p1
||p2 − p1||2

Gz =
(p3 − p2)× Gx

||(p3 − p2)× Gx||2

Gy = Gz × Gx

(3.1)

In this formulation, Gx,Gy, and Gz represent the directional vectors about the x, y, and z

axes, respectively, with reference to the origin, Go. Using the same object contact points,

we can calculate the contact triangle relationship,

T = (||p1 − p2||2, ||p2 − p3||2, ||p3 − p1||2) ∈ R3 (3.2)

representing the distance between fingertips in contact with the object, where T = (T1, T2, T3).

It is important to note that this formulation generalizes object geometry but not necessarily

object dynamics. Additional generalization of object dynamics will be addressed in future

work. Note that this energy model follows a similar idea to that as described in Chapter

3.3.2 Learning from the Energy Model

Underactuated systems can be modeled in terms of energy, where the joint configuration, q ∈

R
∑k

i=1 ji , of a hand that has ji joints per finger, equilibrates such that the internal energy of

the system is minimized. We represent the actuation position as a, where dim(a) < dim(q)

in an underactuated system. Given an actuation velocity, ȧ, and the grasp frame, Xt, at time

t, the energy-based propagation model (or system dynamics model) provides a prediction

for the next step of the grasp frame pose, Xt+1. This transition is calculated given a tendon

transmission constraint,

raiȧi = rpiq̇pi + rdiq̇di (3.3)
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Figure 3.1: Partially constrained trajectories of the manipulation frame, e.g., ∈ R3, leave
uncertainties in grasp frame planning since the mobility of the mechanism is subject to
constraints imposed by the closed kinematic chain. The proposed framework utilizes Model
Predictive Control to solve for a valid grasp frame trajectory with any underconstrained
reference.
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Figure 3.2: (Left) The tendon transmission of an underactuated finger is dependent on
pulley and spring parameters. (Right) Object geometry can be generalized by evaluating
the triangle relationship, T , between the contacts, and offsetting the manipulation frame,
M, from the grasp frame, X .

and the contact triangle constraint, Tt = Tt+1. Thus, we can find the equilibrated joint

configuration of the hand, q∗ by,

q∗ = argmin
∑
i

Ei(qi) s.t. (3.2), (3.3) (3.4)

where Ei is the potential energy of the ith finger,

Ei(qi) =
1

2
(kpq

2
pi + kdq

2
di) (3.5)

Here, rpi, rdi, and rai are the radii of the pulleys on the proximal joint, distal joint, and

actuator, respectively, on finger i (Fig. 3.2). Similarly, ˙qpi, ˙qdi, and ȧi are the rotational

velocities about the same joint on the same finger.

This energy-based propagation model enables efficient data collection in simulation,

and has shown to easily transfer to a physical system [61]. By predefining various contact

relationships in T and applying a random actuation input, ȧ, we observe the grasp frame

transition from Xt to Xt+1, thus calculating Ẋ ∈ se(3) by taking the element-wise difference.
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With a 15-dimensional input feature, sn = (Xn, Ẋn, Tn), and an output feature, ȧn, we build

the training set,

S = {sn}n=1:N , R = {ȧn}n=1:N

whereN denotes training sample size. With these action-reaction pairs, we create a Random

Forest Regression model,

g : (X , Ẋ , T ) −→ ȧ (3.6)

that maps the current pose of the grasp frame, the desired grasp frame velocity, and the

contact triangle relationship to an actuation velocity. This learned model will be further

utilized in the proposed control framework.

Note that this energy model follows a similar idea to that as described in Chapter 2,

but enacts fewer constraints onto the system as to maintain generality. Particularly, the

grasp frame representation enables an object-agnostic learning style to manipulation.

3.4 Controlling In-Hand Manipulation

For the continuation of this work, the main control algorithm is illustrated in Fig. 3.3 and

is notated as follows:

• t denotes the current time and t+n denotes n steps into the future (e.g.,Mt+3 is the

predicted manipulation frame ∈ SE(3) in three timesteps)

• dotted variables represent the change from t, one timestep forward (e.g., Ẋ = [Xt −

Xt+1] ∈ se(3))

• barred variables represent the initialization guess during the bidirInit(·) process,

which has not yet been executed by the propagation model (e.g., X̄t+1 ∈ SE(3))

• primed variables have been executed by the propagation model and are the resultant

configuration after (iter) optimization iterations (e.g.,M′
t+3(25) if iter = 25)
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Figure 3.3: A.) The manipulation frame,Mt, can be represented by a rigid transformation,
T , from the grasp frame, Xt. In Alg. 2 a bidirectional guess initializes the model’s input

variables by assuming that the next grasp frame pose, X̄t+1, has the same velocity, ˙̄Xt+1,
as the underconstrained manipulation frame trajectory transitioning Mt to M̄t+1, which
is located on the next trajectory waypoint rm[wt + 1]. B.) While this bidirectional guess
serves well for initialization, kinematic and energy constraints likely limit mobility and may
not allow the grasp frame to move desirably. Thus, the resultant pose evaluated in the
propagation model, M′

t+1(0), does not follow the path. The optimization then perturbs
the grasp frame velocities of the best trajectory iter times and evaluates the result in
propagation model. This depicts a trajectory convergence with a horizon kp = 3. C.)
After optimization, the first actuation input of the best evaluated trajectory is executed,
providing our true next grasp frame pose Xt+1 and our next manipulation frame poseMt+1.

3.4.1 Model Predictive Control

The proposed control framework utilizes Model Predictive Control (MPC) with an optimizer

based on Stochastic Hill Climbing as to extend the task workspace. MPC is advantageous for

manipulation, as the next control input is optimized after each system step. This property

helps mitigate error caused by inaccurate propagation models or when unmodeled contact

scenarios occur, e.g., rolling or slip.

MPC evaluates the cost of an input over a user defined prediction/control horizon, kp.

This horizon dictates how far in advance the controller evaluates its trajectory, while main-

taining integrity on any system constraints, e.g., actuation constraints or energy constraints.

In this work, we seek to control a subset of the manipulation frame’s dimensions (referenced

as the controlled dimensions) while allowing the free dimensions to move as to satisfy the

system constraints. The manipulation frame, M ∈ SE(3), is a frame of reference rigidly

attached to the grasp frame, X , which would typically be affixed to a feature on the object.

Let’s define our desired reference trajectory as r, comprised of m waypoints in the controlled
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dimensions. We can define the controlled dimension set as c ⊂ (x, y, z, θR, θP , θY ), which

can be any combination of translational and rotational components for a desired trajectory.

We denote the controlled dimensions of the manipulation frame asMc.

While accounting for kinematic, energy, and actuation constraints, we seek to minimize

the error betweenMc,t and r[wt], where wt is the waypoint on r currently closest toMc,t.

Additionally, we impose an extra penalty on how far Mc,t is from the goal position, rend.

We therefore formulate the cost function J ,

J =

kc∑
i=1

γ||r[wt+i]−Mc,t+i||2+ . . .

σ||rend −Mc,t+i||2+λ||ȧt+1||2

(3.7)

where γ, σ, and λ are weightings that are tuned heuristically to penalize the trajectory

error, trajectory length, and the actuation input, respectively. In tuning, for example, if it

is desired to increase execution speed, increasing σ and decreasing γ and λ will do this with

the trade-off of likely decreasing trajectory accuracy.

3.4.2 The Manipulation Controller

Using this cost-minimization approach, we formulate the control process as illustrated in

Fig. 3.3 and as outlined in Alg. 1. We attempt to optimize a controlled trajectory, Ci,

to closely follow r. These controlled trajectories are constructed with a chain of kp + 1

nodes, where kp is the prediction horizon. Each node is referenced in the trajectory chain

with zero-based indexing, so, Ci.n[2] is the third node. Each node has 3 properties–the

current grasp frame (X ), the grasp frame velocity input evaluated in the previous node

(Ẋ ), and the actuation velocity used by the propagation model in the previous node (ȧ).

Each Ci therefore has a cost defined by (3.7) that can be used to compare the utility of each

trajectory.

Initializing the Trajectory

Given r, which has the same dimensionality as c–that can be any combination of dimensions

in SE(3)–the control process begins by constructing the initial trajectory, Cbest. This process
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Algorithm 1 MPC with Stochastic Hill Climbing Optimization

Input: Xt, r, c, kp, T , iter, ϵ
Output: ȧ
1: Cbest ← Trajectory() ▷ initialize first trajectory

2: Cbest.addNode(Xt, Ẋ0 = 0, ȧ0 = 0) ▷ start node
3: for t = 1 to kp do ▷ prediction horizon

4:
¯̇Xt+1 ← bidirInit(Cbest.n[t].X , r, c) ▷ Alg. 2

5: ȧt+1 ← g : (Cbest.n[t].X , ¯̇Xt+1, T ) ▷ (3.6)
6: X ′

t+1(0)← Hand.evaluate(ȧt+1) ▷ (3.4)

7: Ẋ ′
t+1(0)← diff(Cbest.n[t].X ,X

′
t+1(0))

8: Cbest.addNode(X
′
t+1(0), Ẋ

′
t+1(0), ȧt+1)

9: Mt+1(0)← Hand.manipFrame(X ′
t+1)

10: if ||Mc,t+1(0)− rend||2< ϵ then
11: break ▷ reached goal

12:

13: for i = 1 to iter do ▷ optimization iterations
14: Ci ← Trajectory() ▷ initialize new trajectory

15: Ci.addNode(Xt, Ẋ0 = 0, ȧ0 = 0)
16: for t = 1 to kp do

17: Ẋ ′
t+1(i)← perturb(Cbest.n[t+ 1].Ẋ ) ▷ Alg. 3

18: ȧt+1 ← g : (Ci.n[t].X , Ẋ
′
t+1(i), T ) ▷ (3.6)

19: X ′
t+1(i)← Hand.evaluate(ȧt+1) ▷ (3.4)

20: Ci.addNode(X
′
t+1(i), Ẋ

′
t+1(i), ȧt+1)

21: Mt+1(i)← Hand.manipFrame(X ′
t+1(i))

22: if ||Mc,t+1(i)− rend||2< ϵ then
23: break ▷ reached goal

24: if Cost(Ci) < Cost(Cbest) then ▷ (3.7)
25: Cbest = Ci ▷ better trajectory

26:

27: return Cbest.n[1].ȧ
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is outlined in lines 1-11 of Alg. 1 and is depicted in Fig. 3.3.A.

To formulate the first trajectory, we rely on a bidirectional initialization presented in

Alg. 2. This procedure initializes a first guess for the grasp frame velocity, ¯̇Xt+1, by

assuming that the kinematic constraints of the hand allow for identical movement about

the grasp frame as that of the manipulation frame. This process begins by computing the

closest waypoint, r[wt], from Mt to the reference trajectory. We make a guess that the

manipulation frame would like to move to the next waypoint r[wt + 1] while attempting

to keep the free dimensions constant. Through this notion, we calculate a guess for the

next state of the manipulation frame, M̄t+1 ∈ SE(3). A transformation, T , can then be

computed relating Xt toMt. This process becomes bidirectional as we apply the inverse of

T to M̄t+1 to obtain a guess for the next state of the grasp frame, X̄t+1. The grasp frame

velocity guess, ¯̇Xt+1, is finally estimated by taking the element-wise difference between Xt

and X̄t+1.

After the bidirectional initialization guess, ¯̇Xt+1 is evaluated in the learned model g(·),

given the current pose of the node. This resultant actuation velocity, ȧt+1, is executed in

the propagation model, providing the next state grasp frame pose, X ′
t+1(0). The true grasp

frame velocity, Ẋ ′
t+1(0) is then calculated by taking the difference between Xt and X

′
t+1(0).

These variables are then added to the trajectory, Cbest and the entire process is repeated

over the entire length of the control horizon, or until the distance between the manipulation

frame and the endpoint of the trajectory is less than a threshold, ϵ.

Trajectory Optimization

Once the first trajectory is generated, initialized as Cbest, we construct iter temporary

trajectories that attempt to reduce the cost as defined by (3.7). Here, iter represents the

number of optimization iterations we intend to compute. This process is depicted in Fig.

3.3.B and references lines 13-25 of Alg. 1.

Given the grasp frame velocity of the node in timestep (t + 1) of the best trajectory,

Cbest, we perturb its value with a normal distribution of predefined interval limits. This

result, Ẋ ′
t+1(i), where i is the current value of iter, is calculated in perturb(·)–Stochastic

Hill Climbing’s exploration method (Alg. 3). The learned model then evaluates this grasp
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Algorithm 2 bidirInit(·)
Input: Xt, r, c

Output: ¯̇Xt+1

1: Mt ← Hand.manipFrame(Xt)
2: wt ← nearestWaypoint(Mc,t, r)
3: for l in [x, y, z, θR, θP , θY ] do
4: if l ⊂ c then
5: M̄l,t+1 ← r[l, wt + 1]
6: else
7: M̄l,t+1 ←Ml,t

8: T ← getTransform(Xt,Mt)
9: X̄t+1 ← applyInvTransform(M̄t+1, T )

10:
¯̇Xt+1 ← diff(Xt, X̄t+1)

11: return ¯̇Xt+1

velocity to form the actuation velocity, ȧt+1. We execute ȧt+1 in the propagation model

to determine the next grasp frame state X ′
t+1(i) at optimization iteration i. The resultant

node is then added to Ci and the process continues over the entire prediction horizon. If

the manipulation frame is found to have reached within some distance threshold, ϵ, the

loop breaks prematurely. Once a trajectory of kp + 1 in length is computed, we compare

the costs of the best trajectory, Cbest, with the cost of the current trajectory, Ci. If this

cost is smaller, we replace Cbest with Ci and continue this loop until the number of desired

iterations is satisfied.

The algorithm concludes by returning the first actuation input of the best trajectory,

Cbest.n[1].ȧ. This input is then executed physically (Fig. 3.3.C) and results in the actual

system transition fromMt toMt+1, and similarly, Xt to Xt+1. Alg. 1 is repeated until the

trajectory goal is reached.

It is important to note that the algorithm does not require that each waypoint in r is

passed through, as it may be the case that some points along the trajectory are infeasible

given the constraints of the system. To account for this, only the initialization step attempts

to follow a waypoint, while the optimization steps minimize the trajectory cost by staying

within a close distance and extending towards the end goal.
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Algorithm 3 perturb(·)

Input: Ẋt

Output: Ẋ ′
t+1

1: δx, δy, δz ← translationalLimit
2: δθR , δθP , δθY ← rotationalLimit
3: for i in [x, y, z, θR, θP , θY ] do
4: Ẋt+1 ← Ẋt + rand.uniform(−δi, δi)
5: return Ẋ ′

t+1

3.5 Experiments

The proposed control framework was instantiated on a 3-fingered underactuated Yale Open-

hand Model O [49]. Physical modifications to the readily available open source design in-

clude a rounded fingertip and pulleys/bearings within the finger as to reduce friction in

the tendon’s transmission. Each finger, composed of two links, is actuated by a single Dy-

namixel XM-430 motor with return forces supplied by springs at each of the joints (Fig.

3.2).

The learned model in (3.6) was trained with a dataset of size 300,000 over 50 different

contact triangles, T , by evaluating the input-output relationship after random actuation of

the energy model in (3.4). A Random Forest model of tree depth 10 and forest size of 30

was trained, which accounted for joint limits and actuation constraints. Due to the different

values in T used for training, the learned model was able to generalize over different object

geometries, which is beneficial as it enables adaption to undesired contact scenarios where

the relational geometry between the fingertips change, e.g., rolling or slip, as previously

presented in [61].

3.5.1 Translational Trajectory Control

We implemented translational control, i.e., c = (x, y, z), in a simulated environment (Fig.

3.2) while varying the control horizon and number of optimization iterations as to tune the

controller. This test, presented in Fig. 3.4, tracks the x, y, z position of the manipulation

frame over time in an attempt to trace the letters ’GRABLAB’. Depicted in different colors,

three different-sized objects were used in experimentation, with properties presented in
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Figure 3.4: Translation control, c = (x, y, z), of the manipulation frame depicting the ref-
erence trajectory in the x− y plane (Red), and the trajectories of Obj. 1 (Green), Obj. 2
(Yellow), and Obj. 3 (Blue). A.) We trace the letters ’GRABLAB’ while varying control
horizons and optimization iteration lengths. As we increase the number of iterations, the
manipulation frame trajectory becomes more accurate. We see that with fewer iterations,
the manipulation frame is not able to follow the desired trajectory. B.) When the control
horizon increases, subsequently, the number of optimization iterations must as well to re-
alize similar trajectories. C.) Tracing the word ’GRABLAB’ with the most precise control
horizon/iteration pair (horizon of 3 and 100 iterations).
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Table 3.2: Object properties for those used in simulation

Obj. # T1 (mm) T2 (mm) T3 (mm) Tp (mm)

1 98.1 81.3 108.5 (0, 0, 50)

2 73.2 59.7 78.6 (-20, 0, 40)

3 65.2 59.1 71.2 (0, 15, 60)

Properties for the three objects used in simulation. The transformation, T , assumes that
the manipulation frame,M, and the grasp frame, X , have the same orientation, but are
offset by the positional vector Tp.

Table 3.2. Each letter was 20mm in height and 10mm in width and was written within

the x− y plane. Letters were comprised of a number of goal points–squares (start), circles

(intermediate), and stars (end)–with 50 waypoints in between each goal.

Fig. 3.4.A depicts a test correlating accuracy to varying horizon lengths and optimiza-

tion iterations. Generally, we note that as the number of iterations increases (horizontal

axis), the accuracy of the manipulation frame trajectory similarly increases. We note that

it is likely that more iterations are needed for longer control horizons. This observation is

evaluated in Fig. 3.4.B, where we record similar trajectory errors (0.72mm mean) while

increasing the number of iterations for longer horizons (5, 7, and 9). We then present the

best recorded accuracy for the tracing of ’GRABLAB’ in Fig. 3.4.C, with a horizon of 3

and 100 iterations.

Quantitatively, we tune the control parameters by evaluating manipulation frame trajec-

tory accuracy while fixing the horizon length to 3 and altering the number of optimization

iterations. We note that in the task of scripting, a trajectory error of less than 2mm is suf-

ficient for legibility. Testing up to 100 iterations (0.45mm error), the results show that 50

iterations (0.95mm error) is sufficient to satisfy the accuracy required by the task, presented

in Fig. 3.5. For this reason, we will proceed in the next sections by evaluating trajectories

with this configuration.
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Figure 3.5: With a prediction horizon of 3, the letters ’GRABLAB’ were traced with three
different objects while varying optimization iterations. The error experienced during exe-
cution was recorded for each of the trajectories. We identify an elbow point of 50 iterations
satisfies the desired task accuracy.

3.5.2 Rotational and Mixed Trajectory Control

In addition to a purely translational trajectory about the manipulation frame, we test the

control approach with other partially constrained trajectories, namely, a purely rotational

trajectory c = (θR, θP , θY ), and a mixed trajectory, c = (z, θR, θY ). This choice of trajecto-

ries further underscores the diversity of dimensional combinations which can be inherently

accounted for in this framework, after retuning weighting parameters in the cost function

and scaling the controlled dimensions to characteristic length.

In each of these tests, the hand was initialized with the same hand configuration as

in Fig. 3.2, using Obj. 1. With a horizon of 3 and with 50 optimization iterations, a

goal trajectory was formed transitioningM from its current state to a goal configuration.

Five trials were executed, resetting the hand after each trial. We record the state of the

manipulation frame along the execution trajectory. As presented in Fig. 3.6, the trajectory

of M was able to successfully follow the desired control trajectory (0.52 ± 0.3◦ error for

rotations). During this execution, we illustrate how the free dimensions are able to drift so
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Figure 3.6: A single trajectory in Rotation Control (left) and a single trajectory in Mixed
Control (right) was executed for 5 trials. The controlled dimensions (top) follow the tra-
jectory as desired. The free dimensions (bottom) are allowed to drift to any trajectory that
adheres to the system constraints. The start configuration is denoted with a square and the
goal configuration (only in the controlled dimensions) is denoted with a star.
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long as system constraints are satisfied, and thus do not need to follow the same trajectory

each trial. This concept is depicted in the bottom of the figure, where we note a trajectory

deviation between trials.

3.5.3 Physical Translation Control

We employed the devised control framework on a physical system as to complete the tracing

of letters ’RAL’ with three different objects from the YCB Object and Modeling Set (Objs.

#23, 72, 77) [71]. In this case, we employed translational controlled dimensions, c = (x, y),

scripting in the plane orthogonal to the palm as to maintain readability of the completed

manipulation. The three objects, depicted in Fig. 3.7, were tracked by affixing 6-D pose

AprilTags to the object, serving as the manipulation frame. The pose of the marker was

then tracked by an overhead camera. The control framework relies on knowing the current

configuration of the hand in order to compute the next actuation input, therefore, we placed

3 additional cameras around the hand–developing a 4-camera setup that is able to track

the configuration of each finger in addition to the configuration of the object (Fig. 3.8).

Markers were placed on the back of each fingertip and a transformation from the finger

markers computes the contact location, and thus the pose of the grasp frame.

Figure 3.7: Top view of the apple, Rubik’s Cube, and drill from the YCB Object and Model
Set used for physical testing of the control framework.

The markers were affixed to each object as follows: placed on the stem of the apple,

placed on the bottom of the handle of the drill, and placed on the top (any) surface of

the Rubik’s Cube (Fig. 3.7). This generated initial contact triangle relationships and
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Figure 3.8: A 4-camera tracking system records both, the pose of the grasp frame and the
pose of the manipulation frame via attached markers.

transformations from the grasp frame to the manipulation frame as presented in Table 3.3.

Table 3.3: Experiment Parameters

Obj. T1 (mm) T2 (mm) T3 (mm) Tp (mm)

Apple 67.9 57.4 65.7 (3.5, 5.1, 48.6)

Drill 64.9 50.1 66.2 (5.9, -8.2, 121.2)

Cube 63.6 57.1 64.1 (-2.3, -4.2, 37.9)

Grasp and transformation properties of the apple, drill, and Rubik’s Cube used in physical
experimentation. Tp is the translational offset of the grasp frame to the manipulation
frame in x, y, z directions.

We employed a prediction horizon of 3 and set iter to 50. As presented in Fig. 3.9,

each letter was comprised of a set of goal points, which constructed a system of trajectories

approximately 20mm in height and 10mm in width. The task started with the center of the

manipulation frame marker in the square starting position. At this point, a new trajectory

was formed with 50 waypoints providing the path from the current start location to the first

goal point. After the actuation input was solved through the MPC framework, the hand

executed the result and evaluated how close it was to the goal point. If the manipulation

frame was within a 2mm threshold, a new trajectory was formed and the manipulation
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frame would attempt to move towards the next goal point until completion. During this

process and after each input execution, the grasp frame X , the manipulation frameM, and

the contact triangle relationship T were updated as to account for any undesired rolling or

sliding of the contacts.

Letter R A L

Goal Points 8 7 3
Avg. Time (s) 82.4 91.3 32.4
Avg. Err. (mm) 1.23±0.37 1.42±0.45 0.53±0.24

Figure 3.9: The letters ’RAL’ were traced with the manipulation frame on a physical system
for 3 different objects (kp = 3, iter = 50). Top: Three example executions of writing the
letters R (traced with the apple), A (traced with the Rubik’s Cube), and L (traced with the
drill) are presented with their associated goal points. Middle: The path following accuracy
for all three objects tracing letters ’RAL’. Bottom: The average time and trajectory errors
recorded during execution for all three objects.

Each letter was traced with the three aforementioned YCB objects and the execution

times and average trajectory errors were recorded. We noted that the greatest error was

when tracing of the letter ’A’, but was only slightly higher than the letter ’R’. This is likely

attributed to the cross-bar tracing that stopped prematurely. Since we did not greatly
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penalize the input actuation velocity, i.e., λ was small, we noted large motions in physical

execution, typically requiring 2-3 actuation sequences to reach from goal point to goal point.

Overall, these executions resulted in clear, discernible capitalized characters of ’RAL’.

3.6 Discussions

In this chapter, we addressed the problem controlling partially constrained trajectories for

fingertip manipulation about the manipulation frame based on a planning-enabled MPC

framework. This work extends the utility of generalized manipulation models as it is a

way to better satisfy trajectory requirements of various tasks. We tested this approach by

constraining different dimensions of the trajectory–translational, rotational, and mixed–and

we showed that the controller was able to accurately follow the controlled dimensions while

allowing the free dimensions to drift. We found that, generally, a horizon length of 3 with

50 iterations was sufficient for convergence that satisfied our task requirements. This may

not be the case, however, in more complex tasks that typically operate at the boundary of

system constraints. In such cases, more sophisticated parameter tuning and extension of

the prediction horizon may be necessary for a smooth transition to a valid configuration.

In future work, we are interested in further defining this framework for maintaining

hand-object stability–which was largely disregarded in this work since mechanism com-

pliance generally provided stable grasps. Additional accuracy is also likely possible while

accounting for the mass-related dynamics of the hand and of the object. By incorporating

such components, we believe this framework will be extremely valuable for extending robot

manipulation capabilities to even the difficult task of finger gaiting.
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Chapter 4

Planning Finger Gaiting for

Compliant Hands

4.1 Introduction

Within-Hand Manipulation can be characterized as the ability to reorient or reposition an

object with respect to the hand frame [1]. The quest for this capability has been studied in

the robot manipulation community for decades–from planning and control with rigid hands

[17] to efforts with soft, compliant, or underactuated hands [35]. Notably, the majority

of these works constrain contacts to remain fixed or rolling during manipulation. This

constraint limits the object’s workspace as the actuators can only operate on a single hand-

object configuration manifold. Alternatively, finger gaiting, i.e., the process of repositioning

contacts on the object during manipulation, can help alleviate such limitations and extend

the object’s available workspace.

Finger gaiting is an inherently difficult task for a robot. Given a robot hand, the indi-

vidual serial link fingers must work in proper unison without collision; maintaining stability

while making and breaking contact with the object [72]. The computational complexity of

this problem has traditionally been very expensive–requiring the system to calculate and

modulate forces and planned joint trajectories online during manipulation. We, conversely,

are able to alleviate many of these complexities by leveraging compliance, i.e., safe modal
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Figure 4.1: We explore the development of a complete SO(3) planner for within-hand
manipulation using finger gaits, by controlling two orthogonal extrinsic rotation axes. Given
a start configuration (cube face A), the proposed planner finds an action sequence along the
two controlled dimensions so as to reach the desired goal configuration (cube face B). During
manipulation, the pose of the object is tracked via a low-latency, 6D pose object tracker,
providing feedback for online replanning and disturbance compensation via a recovery phase
that uses translation control.

transitions, in our system. The capabilities we present extend beyond what has been illus-

trated previously in the literature, some purely in simulation [73,74] and some demonstrated

on a real robot, but with support surfaces [11,75,76] .

In this chapter, we build off the observation that by leveraging the passive adaptive

properties of an underactuated hand, we can convert traditional position, force, and sta-

bility control problems to a unified motion-only control paradigm, based on the compliant

properties of the hand. Concretely, finger gaiting requires contacts to be constantly in mo-

tion. The presence and thus activation of certain contacts constrains what forces the hand

can impart onto the object. This phenomena creates the abstraction of modes, which can

be conceptualized as different families of motion manifolds that are subject to the system’s

current set of constraints–typically in the form of gaining or losing contacts. Multi-modal

planning within and between these constraints thus becomes a major focus of this work.

We in this work can constrain our planning approach according to the nature of the task.

Formally, any orientation in SO(3) can be achieved via a three action trajectory comprised

of two orthogonal rotations. From this formulation, we design two core modal actions for the

hand and a multi-modal planner that runs online and is constantly updated via a vision-
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based, low-latency 6D pose object tracker [77, 78]. This method continually calculates a

trajectory from start to goal and when undesired scenarios arise, such as contact slip, the

planner updates and suggests new actions accordingly. We incorporate this approach into

an open-source and underactuated hand with four fingers [79]. In the end, we showcase

the efficacy of our system through various experiments: tracking the planned and executed

trajectory of an object, evaluating the recovery potential given undesired perturbations,

and finally, the ability to extend to novel object geometries.

The contributions in this chapter are threefold. First, we develop a complete and fast

planning solution for in-hand reorientation using two extrinsic rotation axes. Secondly, we

describe the utility of compliance for switching between modes and how it “inflates” the

contact switching region. And, finally, we present a simple yet effective robot system capable

of complex finger gaiting capabilities, underscoring continued discussion in the community

on the utility of compliance for in-hand manipulation tasks. In the continuation of this

chapter, please refer to Table 4.1 for nomenclature.

Table 4.1: Chapter 4 Nomenclature

Symbol Description

q Particular hand configuration: q ∈ R6

o Particular object configuration or pose

Q Configuration space of the robot: q ∈ RN where N is the number of joints

O Configuration space of the object: SE(3)

R Rotation of the object: SO(3)

M Constrained manifold of the system subject to constraint function
F η(q, o) : RN → Rkη
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4.2 Related Work

Modeling Manipulation

Modeling robot manipulation has historically been arduous as the dynamics associated with

contact are difficult to predict in novel scenarios. From an in-hand manipulation perspective,

various levels of modeling have been investigated – from contact models [55] and fingerpad

curvature models [47], to hand kinematic models and whole hand-object system models

[21]. While these approaches have elucidated many powerful hand-object relationships,

inaccurate parameterizations can often lead to task failure [80]. To help alleviate such

uncertainty, several end effectors leverage designs that are soft or underactuated [57]. This

property provides passive reconfigurability to the mechanism, which can absorb much of the

“slack” traditionally required to be fully accounted for in system modeling and can further

reduce grasp planning times [81, 82]. In this work, we leverage such mechanisms to unify

our planning approach–creating the notion of safe regions for contact switching.

Extending In-hand Manipulation Capabilities

Models for in-hand manipulation are typically constrained to fixed or rolling contact scenar-

ios. While this advantageously simplifies assumptions for control, it also limits the object’s

available workspace to be dependent on the kinematic topology of the hand. Without rely-

ing on external contact, e.g, [83], or task-specific hands with roller-based fingers, e.g [84],

two general approaches can help alleviate such constraint: sliding manipulation and finger

gaiting. Leveraging the former is very difficult, as detecting and controlling its nonlinear

conditions requires various levels of advanced sensing [18, 40]. The latter, alternatively,

has been largely difficult due to computational considerations, but has been made more

successful in recent years [7, 74].

The work in [43] used finger gaits and tactile sensors to maintain grasp stability. [11] used

a 24-DOF hand with a motion capture system, in addition to “over 100 years” of simulated

data to perform impressive and fast cube manipulation in the palm. [75] leveraged the

capabilities of a soft hand with 16 degrees of actuation for similar types of manipulation.

While as impressive as these aforementioned works are, we are interested in extending
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beyond these capabilities to work against gravity, i.e., maintaining object stability without

a support surface, and while utilizing a simple hand with very little onboard sensing.

Multi-Modal Planning for Manipulation

Problems in robot manipulation are frequently multi-modal, i.e., the seemingly continuous

problems have an underlying discrete structure guided by constraints [85]. These con-

straints are typically imposed by the nature of contact, and by discretizing planning in

terms of these manifolds, the planner search space is confined according to physical con-

straints [86]. Numerous sampling-based multi-modal planners have been described in the

literature, which are able to generalize well, particularly in high-DOF scenarios. Though,

sampling-based methods without informed exploration are vastly inefficient and suffer from

time-complexities associated with over-exploration. Recent work has attempted to address

this issue by using informed “leads” to guide exploration [87]. In our work, we build off

these observations and constrain our planner’s search according to physical properties of the

SO(3) rotation group. That is, our developed planner constrains the number and nature of

mode switching to reduce planning time for continual updates during online execution.

4.3 Preliminaries

In this section, we introduce the preliminaries associated with multi-modal motion planning.

We first discuss constrained manifolds and then develop notation and terminology for modal

switching leveraging compliance.

4.3.1 Constrained Within-Mode Planning

Consider a robot with configuration space, Q ⊂ RN , where N is the number of joints

and where Q can completely define the state of the robot. Now, consider an object with

configuration space, O ⊂ SE(3), which is located on a support surface, e.g., table top.

For simplicity, let’s disregard other potential collisions in the environment. In free space,

the current robot configuration, q ∈ Q, is unconstrained and thus able to freely move.

Though, when q causes links of the robot to come in contact with the object in its current
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Figure 4.2: Multi-modal planning problems can be conceptualized as operating in different
configuration manifolds. (a) Given a single manifold M, the planner must find a path
along the constrained layer. (b) A single mode, or foliation, can have multiple manipulation
manifolds depending on the start configuration of the hand-object system. (c) Switching
modes is possible when the system finds a configuration, q′, that lies on both manifolds. (d)
Finding a path from start configuration, qs, to goal configuration, qg, can require multiple
jumps between modes. Note that although represented in this figure as folds, we assume
modes to be differentiable but not necessarily euclidean.

configuration, o ∈ O, a constraint is imposed on the system. The robot cannot push

the object through the support surface. If, for instance, the goal of the robot is to slide

the object along its support surface, the robot’s motion is thus constrained to a contact

configuration manifold,M (Fig. 4.2(a)).

Assume there are several manifolds, indexed by η. The available motion manifold of

the robot,Mη, is subject to its associated constraint function F η(q, o) : RN → Rkη where

(1 ≤ kη < N). Modes are thus defined as a family, or foliation, Fζ , of constrained manifolds

that share the same, or similar, constraint functions (Fig. 4.2(b)). Inside each Fζ , we

assume allMη to be smooth and differentiable. Therefore, planning in theMη ∈ R(N−kη)

manifold of RN is subject to,

Mη = {q ∈ Q|F η(q, o) = 0} (4.1)

4.3.2 Safe Mode Transitions

Multi-modal planning requires a robot to transition between at least two constraint man-

ifolds, which likely lie in different foliations, in order to reach the desired goal. Consider

a robot starting in configuration qs, located in manifold Mζ1
η1 . Let’s now assume the goal

configuration qg is located in a different mode and thus along a different manifold, i.e.,Mζ2
η2
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(Fig. 4.2(c)). In order for a robot to transition to qg, a planner must find a candidate

submanifold, Mη1∩η2 , that enables a transition. Inside of this submanifold lies candidate

configuration, q′, for transitioning. We can defineMη1∩η2 according to,

Mη1∩η2 = {q ∈ Q|F η1(q, o) = 0, F η2(q, o) = 0} (4.2)

Note that it is possible forMη1∩η2 to be empty when there exists no q′ to transitionMζ1
η1

toMζ2
η2 .

In many robot scenarios, if a transition is possible from Mζ1
η1 to Mζ2

η2 , the transfer

region typically has a volume near zero, i.e., Ω(Mη1∩η2) ≈ 0 where Ω is the convex hull

function. There are situations, however, where we can relax this constraint to form safe

mode transitions. Formally, the manifold’s constraint function, F η(q, o), is dependent on

the robot’s current configuration, q and object configuration, o. Though due to near-

unmodelable DOFs in soft, compliant, or underactuated robots or objects, the controlled

configuration of the robot may still hold for RN → Rkη , but the true configuration of the

system may be non-deterministic. Thus, there can exist a relaxation of this traditional

modal switching constraint, which in turn can simplify and accelerate planning [81]. We

define a modal transition threshold vector, ρ, that defines an inflation of the constraint

manifold along different axes, which inherently increases the potential volume ofMη1∩η2 to

develop a safe transfer region,

M∗
η∩η′ = {q ∈ Q|−ρ < F η(q) < ρ,−ρ < F η′(q) < ρ} (4.3)

The success of our finger gating platform in this work largely leverages this concept. Ex-

plicitly defining ρ, however, is difficult as it is system dependent, i.e., properties of the

hand and the object determine how inflated the switching regions become. As a proof-of-

concept analysis, we estimate ρ via experimentation in Sec. 4.7 and will leave computational

investigation for future work.

75



(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 4.3: (a) Our planning solution for SO(3) begins by enumerating outward the goal
orientation manifold by step size σR and creating a KD-Tree. (b) After creation, a forward
search outward is performed from the start orientation, Rs, combining a z−axis rotation
first, then an x−axis rotation. (c) This search continues until a candidate orientation is
within some distance ρ from the expanded goal manifold. (d) Finally, the entire plan is
enumerated from start to goal along the acquired trajectory with appropriate timestamps
and step size σR.

4.4 Orientation-based Motion Planning

We formally define the problem of orientation-based motion planning and the minimum

number of actions required. Then, we utilize this as a guarantee for the completeness our

planner’s modal search transitions.

4.4.1 Proper Rotations in SO(3)

Proper rotations are sets of angles that can fully define any rotation in the group, SO(3).

Let’s assume we have an object with some rotation, R. It is possible to transition R to any

rotation configuration via a combination of rotations along two orthogonal axes. Though

there are six total combinations, we will instantiate our planner to focus on rotations along

the z−axis (Rz) and x−axis (Rx) to serve as an example.

Theorem 1: Let the rotational configuration of the object be R ∈ SO(3). Then there exists

at least one (ϕ, θ, ψ) ∈ [0, 2π)× [0, π]× [0, 2π) such that R = Rz(ϕ)Rx(θ)Rz(ψ) [88,89].

This realization defines the minimum number of unique modes that are needed to achieve

any rotation in SO(3). In this work, we will generally focus on transitioning between two

modes, FRz and FRx , a total of two times to reach any goal configuration.

Proof: Consider the group of rotations SO(3) = {R ∈ R3×3|RRT = I, det(R) = 1}, where

there exits elemental rotations Rx ∈ SO(3) and Rz ∈ SO(3), about the x− and z− axes,
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respectively. We can decompose R to be a tuple of three unit vectors, i.e., R = [v̂1v̂2v̂3],

that represent a right handed triple coordinate frame. Let’s assume we provide a basis for

R3 also representing a proper right handed triple,

ê1 =


1

0

0

 ê2 =

0

1

0

 ê3 =

0

0

1

 (4.4)

From this formulation, we can set a reference vector n̂, which is perpendicular to v̂3 as,

n̂ =


ê3×v̂3
|ê3×v̂3| if v̂1 ̸= ±ê3

sgn(v̂1)ê1 else

(4.5)

where sgn(·) is the sign function and × is the cross product. Given n̂ and our first basis

vector ê1, where n̂ is also perpendicular to v̂3, there exists some rotation angle ϕ ∈ [0, 2π)

along the z−axis which maps n̂ to ê1, but also leaves ê3 invariant according to Euler’s

theorem, i.e.,

n̂ = Rz(ϕ)ê1 ê3 = Rz(ϕ)ê3 (4.6)

After application of ϕ, ê3 and v̂3 are now both perpendicular unit vectors to n̂. Thus, there

exists a new offset angle θ along the x−axis that will align these two vectors. Notably,

θ ∈ [0, π] because n̂ began with direction ê3×v̂3 and thus has a antipodal mirrored coordinate

on the great circle. Consequently, the new formulation is,

n̂ = Rz(ϕ)Rx(θ)ê1 v̂3 = Rz(ϕ)Rx(θ)ê3 (4.7)

Finally, we note that n̂ and v̂1 are now both orthogonal to basis vector ê3. Therefore,

there must exist an angle ψ ∈ [0, 2π) between these two vectors such that there becomes

alignment. A rotation of ψ about v̂3 is thus implemented,

v̂1 = Rz(ϕ)Rx(θ)Rz(ψ)ê1 v̂3 = Rz(ϕ)Rx(θ)Rz(ψ)ê3 (4.8)
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Notably, this above formulation does not alter or constrain the original unit vector v̂2 in

any way. We find that Rz(ϕ)Rx(θ)Rz(ψ) has the same first and third columns as our target

rotation, R. Due to the group properties of SO(3), Rz(ϕ)Rx(θ)Rz(ψ) and R must have the

same second column, i.e., Rz(ϕ)Rx(θ)Rz(ψ)ê2.

■

4.4.2 Planning Orientation Transitions

Following this realization and the preliminaries in Sec. 4.3, we develop a complete multi-

modal planning algorithm for finger gaiting that consists of three rotations along two orthog-

onal axes. If, for instance, all three orthogonal axes were available, the planning problem

would be mostly trivial–simply transition the object along each axis as much as necessary

to reach the goal. For the duration of this paper, we will refer to rotations about axes as

being extrinsic, i.e., according to the hand frame of robot, and will adopt the notation that

Rx(·) and Rz(·) are rotations of the object about the x− and z−axes of the hand frame, or

roll and yaw, respectively.

Let’s assume the capabilities of the robot enable the formulation of just two mode

foliations, which are able to take an object in any configuration and rotate about the x− and

z−axes, respectively. Given an object in start configuration os = {Ts ∈ R3, Rs ∈ SO(3)},

the objective of this planner is to reach a desired goal pose, og = {Tg ∈ R3, Rg ∈ SO(3)}.

For now, we will disregard the translational positions, Ts and Tg, and focus on rotation.

As to accelerate computation, the proposed planning method is bi-directional in that

it builds a search trajectory outward from both, the start and goal configurations. More

formally, there exists rotations such that Rg = Rz2(ϕ)Rx(θ)Rz1(ψ)Rs where Rz1(ψ) is the

first rotation about the z−axis, Rx(θ) is the rotation about the x−axis, and Rz2(ϕ) is the

second rotation about the z−axis. Thus, the goal of this planner is to solve for ψ, θ, and ϕ

and enumerate a trajectory accordingly.

Alg. 4 begins with the backward pass by populating a z−axis rotation outward from Rg
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Algorithm 4 SO3Plan(·)
Input: Rs, Rg, ρ, σR ▷ object start orientation, object goal orientation, modal

transition threshold, rotational step size
Output: P ▷ multi-modal plan
1: Σ = [0, σR,−σR, 2σR,−2σR, · · · , π,−π] ▷ candidate steps
2: Mz2 ← [Rz(ϕ)Rg for ϕ in Σ] ▷ expanded goal manifold
3: KD ← KDTree.build(Mz2) ▷ KD-Tree of goal manifold
4: for ψ in Σ do
5: for θ in Σ do
6: R∗ = Rx(θ)Rz(ψ)Rs ▷ outward expanding search
7: ϕ← KD.query closest config(R∗)
8: if distR(Rz(ϕ)Rg, R

∗) < ρ then ▷ distance function
9: break loops ▷ bidirectional trajectory connects

10: end if
11: end for
12: end for
13: P ← planner.enumerate(Rs, σR, ψ, θ, ϕ) ▷ enumerate path outward according

to connection (Fig. 4.3(d))
14: return P

with step size, σR, which is user-defined (Fig. 4.3(a)). For our implementation, σR can gen-

erally range anywhere from 0.5-5.0◦ and can be adaptive according to system architectures.

Let’s say that these discretized rotations outward from Rg can sufficiently define the entire

manifold,Mz2 , i.e., an entire rotation of the z−axis about Rg. From these configurations in

Mz2 , we can build a KD-Tree, KD, which is a data structure that enables efficient querying

of the rotations included in this manifold.

Now that the backwards direction is instantiated, the goal of the forward pass is to find

rotations Rx(θ)Rz1(ψ)Rs such that they can “connect” to the manifold Mz2 represented

by KD within some distance threshold ρ from (4.3) (Fig. 4.3(c)). As aforementioned, ρ

is the inflation factor for contact switching, and is generally system dependent. Here, we

utilize a user-defined rotational distance function distR(·), where for our instantiation, we

calculate the L2-norm of the difference vector along the roll, pitch, and yaw dimensions of

two rotations. Though, we note that there are other metrics available, e.g., [90]. Tangibly,

this forward pass sequentially searches through candidate values for ψ and θ until the

trajectory reaches the goal manifold Mz2 , which is found by continually querying KD.

Once this connection is found (Fig. 4.3(d)), values for ψ, θ, and ϕ are recorded, and a
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trajectory for plan P is enumerated with timestamps along step size σR from start to goal.

4.5 Object Control

Finger-gaiting is a dynamic and uncertain process; making and breaking contacts can often

lead to slip which could further result in object ejection. To mitigate such occurrences, our

solution is to continually replan and execute modal actions. More specifically, we rely on an

online servoing-based framework so as to reach the desired goal. When the object enters a

region of potential instability, such as being distant from the workspace center, a recovery

phase comprised of translational modal actions is enacted to relocate the object.

4.5.1 Translational Planning

Planning translations within-hand, presented in Alg. 5, performs a simple, greedy visual

servoing control approach. Generally, the algorithm calculates the translational difference,

γ, along each of the coordinate axes from start position, Ts, and goal position, Tg. The

planner then chooses the direction of largest difference and creates a plan to take a single

step in that direction [50].

Algorithm 5 TranslationP lan(·)
Input: Ts, Tg, σT ▷ object position, object goal position, step size
Output: P ▷ plan
1: γ.x← Tg.x− Ts.x ▷ translational difference along x−axis
2: γ.y ← Tg.y − Ts.y ▷ translational difference along y−axis
3: γ.z ← Tg.z − Ts.z ▷ translational difference along z−axis
4: P ← {}
5: π ← max(|γx|, |γy|, |γz|) ▷ direction of maximum deviation
6: if π is |γx| then
7: P ← [Tx+sgn(γx)σT , Ty, Tz] ▷ desired move ±Tx
8: else if π is |γy| then
9: P ← [Tx, Ty+sgn(γy)σT , Tz] ▷ desired move ±Ty

10: else if π is |γz| then
11: P ← [Tx, Ty, Tz+sgn(γz)σT ] ▷ desired move ±Tz
12: return P

80



4.5.2 Orientation and Translation Control

Our control approach combines both, Alg. 4 and Alg. 5. This method requires a goal

threshold, τ , a linear interpolant update parameter, λ, and a priori knowledge of the hand’s

workspace center, Tcenter, for object recovery.

In executing Alg. 6, orientation control is accomplished first. A plan P is found accord-

ing to the object’s current object rotation, R. The robot then takes a single action along

P via the robot.mode action(·) method. This system-specific function enacts a motor po-

sition step proportional to σR along the desired mode. From this action, an object pose

displacement, δ, is calculated by taking the distance between the original orientation, R, and

the new orientation, R′, after the action. This value δ serves as a differential update term

along the orientation transition, which allows us to adaptively re-estimate σR according to

an interpolant update parameter λ. Since, as aforementioned, there is inherent uncertainty

in the task of finger gaiting, this adaptive update to the transition step size σR serves to

aid in our plan’s accuracy for the true motion of the hand-object system. The algorithm

continues while R is outside of the goal distance threshold τR. Notably, a recovery phase

(lines 12-16) is developed inside of this loop and is enacted when the object position, T ,

is distance τT outside of Tcenter. At this point, the system takes greedy transition steps

towards the center of the workspace for recovery.

Alg. 6 concludes by performing steps along P found from the TranslationP lan(·)

method so as to reposition the object within-hand after object reorientation. We implement

this method last to decouple orientational and translational planning for the final pose.

4.5.3 Generalization and Practical Algorithm Modifications

The authors present this solution as a generalized approach to planning for in-hand ma-

nipulation. Surely, the design and realization of the robot.mode action(·) method begs

questions for system-specific scenarios, but can be found in a variety of ways: analytical

modeling, dynamics learning, reinforcement learning, etc. While we do not focus on de-

scribing the underlying components of this function in this work, we largely leverage an

energy-modeling technique outlined in [91] for determining predicted object transitions.
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Algorithm 6 ObjectControl(·)
Input: og, ρ, σ, τ , λ, Tcenter

▷ object
goal pose, modal transition threshold vector, pose transition step size, goal pose
reached threshold, interpolant step size, center of object workspace

Output: of ▷ final object pose
1: Tg, Rg ← og.T, og.R ▷ translation and rotation of goal pose
2: o← tracker.perceive() ▷ object pose ∈ SE(3)
3: T,R← o.T, o.R ▷ translation and rotation of object pose
4: while distR(Rg, R) > τR do ▷ orientation control
5: P ←planner.SO3Plan(R,Rg, ρ, σR) ▷ Alg. 4
6: robot.mode action(P , σR) ▷ execute modal action
7: o′ ← tracker.perceive() ▷ new object pose
8: T ′, R′ ← o′.T, o′.R ▷ new object translation and rotation
9: δ ← distR(R

′, R) ▷ size of last action step
10: σR ← σR + λ(σR − δ) ▷ update rotational transition step
11: T,R← T ′, R′

12: while distT (T ,Tcenter) > τT do ▷ object recovery
13: P ← planner.T ranslationP lan(T, Tcenter, σT )
14: robot.mode action(P , σT ) ▷ execute modal action
15: o← tracker.perceive() ▷ object pose
16: T,R← o.T, o.R ▷ object translation and rotation

17: end while
18: end while
19: while distT (Tg, T ) > τT do ▷ translation planning
20: P ← planner.T ranslationP lan(T, Tg, σT ) ▷ Alg. 5
21: robot.mode action(P , σT ) ▷ execute modal action
22: o← tracker.perceive() ▷ object pose
23: T,R← o.T, o.R ▷ object translation and rotation

24: of ← tracker.perceive() ▷ final object pose
25: return of
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Figure 4.4: (a) Our system is comprised of a RGBD camera fixated to the robot’s envi-
ronment. (b) During manipulation, the pose of the object, e.g., bunny, is tracked via a 6D
pose object tracker. (c) A bottom view of the Yale Model Q illustrates the 110◦ abduction
capabilities of the differentially coupled fingers.

Moreover, the proposed planner can be further accelerated by subtle variations to the

aforementioned algorithms. First, KD only needs to be computed once since the goal

pose is static. Also, initialized step sizes for σ can deviate between modes according to

system-specific properties, e.g., when gravity affects the rotation for one mode more than

another.

4.6 Experimental Setup

4.6.1 Robot Setup

We utilize the open-source Model Q, an underactuated hand from the Yale OpenHand

Project [49]. The hand is equipped with four two-link fingers and four total actuators. A

single motor controls the actuation of an opposing set of fingers with joints comprised of

flexures, guided by a differential. This enables passive reconfigurability between these two

fingers and into/out-of the plane of grasping. These two coupled fingers are connected to

an actuated rotary joint located within the palm, allowing 110◦ rotation about the z−axis

of the hand (Fig. 4.4). The final two motors serve to actuate the remaining two fingers

individually via tendons. Being underactuated, the hand’s joint configuration cannot be

determined directly, as it is not equipped with joint encoders or tactile sensors. See [79] for

additional design information.
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The hand is mounted on a 7-DOF Barrett WAM arm. External to the robot, an RGBD

Intel Realsense D415 camera is calibrated to the robot’s environment. Its imagery is pro-

cessed through the low-latency (60Hz) 6D pose object tracker (Fig. 4.4). The tracker is

robust to finger occlusion, has approximately ±1.5mm/ 2◦ of noise along any axis, and is

trained solely with synthetic object data. See [77] for additional information.

Mode 2 (−𝑥𝑥 rotation)

Mode 1 (−𝑧𝑧 rotation) Mode 1 (+𝑧𝑧 rotation)

Mode 2 (+𝑥𝑥 rotation)
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Mode 4 (−𝑦𝑦 translation)
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Start 
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𝑦𝑦
𝑥𝑥

Figure 4.5: The Yale OpenHand Model Q is capable of operating along four modes for
fingertip-based manipulation. Modes are shown with transitions from the start configuration
(center).
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Figure 4.6: (a) We experimentally validate our method with 5 different objects, namely a
cube, sphere, toy truck, Stanford Bunny, and toy duck. (b) Tessellated faces of the cube
show poses of the affixed letters.

4.6.2 Mode Design

As described in Sec. 4.4.2, a series of rotations about two orthogonal axes allow an object

to reach any orientation in SO(3). Given the hand topology of the Model Q, an extrinsic

z−axis rotation is easily possible via the palm’s rotary joint. Moreover, an extrinsic x−axis

rotation is also possible via coordinated finger motions; grasping with the differentially

actuated opposing pair and pushing the object from either individually driven fingers as

validated by [91].

In addition to the two rotational motions, the hand topology furthermore allows for only

two translational modes. The first can translate the object along the z−axis by squeezing

the object towards the palm and regrasping, or by leveraging small amounts of coordinated

slip, and simple y−axis translation is possible via a method described in [50] (Fig. 4.5).

Note that translation about the x−axis is not possible due to the actuation coupling of the

rotary set of fingers. By combining these two translational modes, we are able to provide

a recovery phase for the object (Fig. 4.1, 4.8), repositioning the object towards the middle

of the workspace so that manipulation can safely continue. Note that x−axis translation is

thus omitted.
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Figure 4.7: The safety of mode transitions are attributed to the reconfigurability of the
underactuated mechanism. (a) Starting rotations around different axes of the object elicit
different amounts of reconfiguration upon regrasping. (b) This is particularly apparent in
the yaw (z−axis) direction of the object, where the object follows the minimum energy
configuration of the mechanism, and hence allowing us to estimate ρ from Eq. (4.3).
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4.7 Experiments

4.7.1 Safe Modes Characterization

The passive adaptive nature of compliant hands is particularly beneficial for the task of

finger gaiting. Simply, small errors associated with state estimation, modeling, and control

can likely be dismissed by the system “absorbing” the slack. It moreover determines the

“inflation” of switching regions, denoted by ρ. To help quantify and validate this adaptive

nature, we evaluate how a regrasp action, i.e., transferring the grasp between sets of opposing

fingers, affects the resultant object configuration.

Evaluated with the cube (Fig. 4.6), we perturb the object along each axis. Subsequently,

the hand transfers the grasp to the opposite set of opposing fingers. In doing so, we

record the amount of object reconfiguration along each axis via the object tracker. Notably,

with the roll orientation of the object, we see a small amount of reconfiguration, but in

the yaw orientation, we note the most reconfiguration (Fig. 4.7), due to the geometric

properties of the cube. More specifically, from the start grasp (blue circle), to the final

regrasped configuration (red square), the object tends to fall towards the minimum energy

configuration of the system (red region) [7, 91]. We note that although there is a large

variability in the object’s start orientation (±0.5 radians), the hand is able to regrasp the

object successfully in all cases. This underscores our safe modes discussion, and generally

allows us to estimate how large ρ can be. For safety, we define ρ = 0.2 radians.

4.7.2 Single Trajectory Execution

We evaluate the repeatability of executing a single trajectory of the cube. Here, the goal

of the task is to rotate the cube from face A to face B, and when completed, translate the

object 1.8cm along the negative y−axis. The resultant executions, depicted in Fig. 4.8(a),

shows the average trajectory of the object over 8 different trials. During this task, we note

how closely trajectories follow along the roll and yaw dimensions, as these are controlled

via our safe modes.

Object recovery occurs at similar times in the trials, where the system transitions the

object along the positive z−axis before completing the x−axis rotations (Fig. 4.8(b)). At
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Figure 4.8: We execute a single planned trajectory 8 times and record its repeatability. (a)
Controlled dimensions of the object trajectory, such as roll and yaw, follow closely in all
trials, where as uncontrolled dimensions, such as x−axis translation and pitch, are allowed
to drift. (b) Modes are enacted at different times in the manipulation, including recovery
phases when the object is not in the center of the graspable workspace.
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Figure 4.9: We test system robustness by (a) following through an extended trajectory
of cube faces F, A, B, C, D, E, and F once again, and (b) deliberately applying different
perturbations to the object along controlled dimensions so as to require online replanning
and recovery.

the end of the orientation control sequence, the object is appropriately translated along the

y−axis to reach its desired goal pose. The average trajectory data, depicted in solid black,

does not extend past the 55 second mark due to one trial finishing earlier than others. The

authors have, for clarity, extended the trajectory in the y−axis translation using a dotted

line to illustrate the average final pose.

4.7.3 Continuous Goal Trajectories and Robustness

We showcase the robustness of our method by evaluating both, an extended control trajec-

tory and by disturbing the object pose during execution. As depicted in Fig. 4.9(a), we
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Figure 4.10: Our manipulation planner is able to extend to objects of convex and non-
convex geometries, and reach any orientation in SO(3).

execute a trajectory starting on cube face F, transitioning through faces A,B,C,D,E and

finally reaching the face F once again. In all cases, the object was able to reach the goal

face within 8◦.

Moreover, we illustrate our ability to replan control trajectories when unmodeled pertur-

bations occur (Fig. 4.9(b)). At different points during manipulation, we randomly perturb

the object pose 13 total times along the least constrained dimensions, the x−axis rotation

and the z−axis translation. Recovering and adapting to these occurrences over the course

of a 205 second trajectory execution, the system completes the object reorientation task

within 6◦ of the goal face.

4.7.4 Generalization to Object Geometry

Finally, we test the transferability of our method by varying object geometries (Fig. 4.6).

In doing so, recovery properties, such as Tcenter from Alg. 6, were recalculated, and the

6D pose object tracker was retrained with new synthetic object data; other aforementioned

parameters, including ρ, remained the same. Depicted in Fig. 4.10, we evaluate simple,
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Table 4.2: Experiment Evaluation

Obj. err (deg) Plan time (s) Total time (s) Success

sphere 4.6 13.2 153.1 5/5

truck 4.2 10.8 112.3 5/5

bunny 9.5 14.0 128.0 2/5

duck 8.9 7.1 73.2 3/5

Experimental evaluation of four different objects with error in final orientation, planning
time, total time, and number of execution successes.

purely rotational trajectories about each of the objects. Notably, the sphere easily followed

each of its guided reference trajectories, and was able to reach goal orientations within

±5◦ along any axis. The toy truck, further illustrated our capabilities, transitioning to

its goal configuration in approximately 110 seconds with 4 recovery phases. And finally,

the Stanford Bunny and the toy duck were the most difficult to manipulate due to their

non-convex properties. With the bunny, fingers would often get stuck behind its ears while

making and breaking contact. Consequently, this occurrence caused the hand-object system

to get stuck in specific object orientations and required restart. Moreover, during duck

manipulation, the size of the duck’s head affected the object’s center of mass. This made

some actions, such as x−axis rotation, difficult as the motion was then more dynamic in

nature. Only a simple, two-rotation trajectory could be completed with the duck, resulting

in a shorter execution time. The precision of these two manipulations was decreased to ±10◦

along any rotation axis and were consequently not quite as robust as the other objects. We

provide benchmarking baselines for our experimentation in Table 4.2 according to guidelines

outlined [92]. Please refer to the supplementary video for experimental evaluations.

4.8 Discussions

In this chapter, we developed a robust and complete solution to SO(3) finger gait planning.

While instantiated on an underactuated hand in this work, the methods described can

generalize to other hand-object systems. We showcased our method with numerous tasks–

highlighting the safety of our modes, the repeatability of our trajectories, the robustness of

our planning and control approach, and our ability to generalize to new object scenarios.
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This work builds on a promising approach of vision-based control for compliant within-hand

manipulation. The tasks completed in this letter extend beyond what has been possible in

previous works.

We would like to highlight the larger contribution of this work in supporting the thesis

that compliance helps speed up planning for robot manipulation. Particularly, we support

this statement by defining and calculating the inflated transfer regions between modalities.

Ultiamtely, this is a major benefit for compliance in robot manipulation.

Although we showcase novel capabilities, there are some limitations. First, hand design

plays a crucial role in our manipulation capabilities. We conceptualize an altered hand that

would enable rotation about the y−axis, thus shortening trajectories. While our method

may have relied less on data and/or advanced sensing, we note that our manipulation actions

were significantly slower than some other related works [11, 75]. Moreover, we discuss the

“inflation” parameter ρ quite extensively, which begs for further theoretical investigation.

To this end, the development of geometry-focused modal actions and transitions is an

interesting avenue.

Lastly, the current tracking schema requires an object CAD model for training. We

are interested in combining object-agnostic tracking methods [93] together with the current

object-agnostic controller for instant application to novel objects in the future.

91



Chapter 5

Robot Assembly with Compliant

Robots

5.1 Introduction

The three previous chapters focused on methods of how we can observe, control, and plan

compliant in-hand manipulation online. While these studies were thorough, they typically

only discuss a subset of the robot manipulation tasks theorized, i.e., in-hand manipulation.

Thus, we are interested in how we can extend this to a wider array of tasks and determine

how our formulations can serve for as a foundation for the study of general, whole-arm

assembly tasks for robots.

Particularly, vision-based control for robots is a promising approach for traditionally

difficult problems. Similar to the motivation for in-hand manipulation, it simplifies the

complexity of the system in many capacities by disregarding the need for complex tactile

sensors. If compliance can continue to “take up the slack” in control, planning, and modeling

uncertainty, it could similarly help aid in achieving task success for general assembly.

In this chapter, we study this concept through two different lenses. First, we attempt

to complete difficult tight tolerance insertion and open-world assembly tasks solely with

vision. Thereafter, we investigate the benefits of adding minimal force feedback into the

control loop as to potentially enable more advanced capabilities.
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5.2 Vision-based Tight Tolerance Insertion

5.2.1 Introduction

Developing robotic systems capable of operating in contact-rich environments with tight

tolerances has remained an open research challenge. Despite progress, this is especially true

for precision manipulation, where an object must be perceived, grasped, manipulated, and

then appropriately placed given task requirements [94–96]. Such functionality is common

for everyday insertion tasks e.g., stacking cups into one another, placing a key into a lock,

or packing boxes, which are skills particularly advantageous to investigate for developing

more capable robots in various application domains [4, 97].

(b)

(a)

Figure 5.1: (a) An RGBD-based 6D object pose tracker monitors the task state, serving
as the primary sensing modality for the robot performing a variety of insertion tasks with
tight tolerances, (b) the sequence of cup stacking.

A robotic system’s compliance, i.e., the adaptability of its kinematic configuration, has

been key in dealing with uncertainty. Failures during manipulation are often attributed to

uncertainty introduced in internal modeling, sensor readings, or robot state, which makes
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the system act undesirably in contact-rich scenarios, such as peg-in-hole or assembly tasks.

Mechanical compliance, unlike its algorithmic counterpart [28,98], is inherent to the robot’s

design and enables the system to passively reconfigure when external contact is enacted

[19,99]. Although beneficial, the robot typically lacks otherwise required sensing modalities

for precision control, i.e., joint encoders and force sensors can be absent. This poses a

limitation, as there exists little knowledge about the robot’s true state [100–102], which

complicates the achievement of sub-mm accuracy.

Estimating the task’s state dynamically, such as the object’s 6D pose [77,103,104], when

onboard sensing is unavailable can be achieved through feedback from inexpensive, external

alternatives, such as RGBD cameras [34,105]. Although requiring additional computation,

this sensing modality is advantageous as it does not require invasive, bulky sensor suites

on the robot, while also providing a wider “field of sensing” for perceiving an extended

workspace.

This work investigates whether a framework for compliant systems using exclusively

visual feedback can perform precision manipulation tasks. It showcases a complete system

and conducts numerous peg-in-hole insertions of varied geometries, in addition to complet-

ing several open world constrained placement tasks. In this way, it tests the boundaries

of what is possible for vision-driven, compliance-enabled robot assembly, focusing on three

main goals: 1) Perform tight tolerance insertion tasks without force sensing, a precise ma-

nipulator, or task-specific, online learning; 2) Leverage the extended workspace afforded by

compliant, within-hand manipulation to increase the reliability of insertion; and, 3) Demon-

strate the role of vision-based feedback for tight tolerance tasks with system compliance.

To accomplish these goals, this effort brings together the following components:

• Vision-based Object Pose Tracker: Utilizes state-of-the-art low-latency RGBD-

based 6D object pose tracking [77], which is shown to be accurate enough when

combined with mechanical compliance to solve the target tasks. The visual tracking

monitors the task’s state in the form of the object’s 6D pose in a way that is robust

to occlusions and varied lighting conditions, while trained solely offline on simulated

data (Sec. 5.2.3).
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• Object-Agnostic Within-Hand Manipulation: Uses a learned model of the in-

verse system dynamics of an open source and underactuated dexterous hand that is

object agnostic [106]. The model is used to perform within-hand manipulation for

object orientation alignment that facilitates insertion (Sec. 5.2.3).

• Visual Feedback Controller: Develops an insertion control strategy that relies

exclusively on the task’s state, which closes the loop through the object tracker’s 6D

pose estimate and generalizes to objects of differing geometries so that it is applicable

to different scenarios (Sec. 5.2.4). The controller intentionally leverages contacts with

the environment and compliance in order to increase reliability, similar to the notion

of extrinsic dexterity [107].

This chapter section evaluates the efficacy of the complete system by performing a va-

riety of high-precision manipulation tasks. The results in Sec. 5.2.5 showcase that the

proposed general object insertion algorithm, which relaxes rigid insertion constraints due

to compliance, exhibits a high rate of success for tight tolerance applications. There are

demonstrations indicating that the system further generalizes to a variety of everyday pre-

cision placement tasks – stacking cups, plugging a cord into an outlet, inserting a marker

into a holder, and packing boxes – underscoring the system’s practical use for complex

manipulation scenarios.

5.2.2 Related Work

Strategies for peg-in-hole insertion, or more generally robot assembly tasks, have been

studied from numerous viewpoints for several decades raising many challenges [94]. Insertion

strategies for pegs of various geometries have been previously studied and attempted via a

variety of possible techniques and system models: standard cylinders [108–110], multiple-peg

objects [111,112], soft pegs [113], industrial inserts [114], and open world objects [115–119].

This work seeks to generalize insertion for various geometries.
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Model-Based Insertion

Approaches using contact models reason about state conditions and optimal insertion tra-

jectories while controlling the manipulator [112,113]. These techniques typically require ex-

pensive force-torque sensing to detect peg-hole interactions [109,120]. Visual-based methods

have been less successful, as estimation uncertainty often causes the manipulator to apply

unwanted forces either damaging the robot or its environment [121].

Compliance-enabled architectures, both hardware-based [115, 117] and software-based

[108], are widely used to overcome uncertainties in modeling, sensing, and control of a

purely rigid system. Such solutions can be applied to the manipulator, the end effector,

or both. The majority of previous peg-in-hole insertion works investigate compliance in

the manipulator’s control – fixing the object directly to the manipulator and evaluating

trajectory search spaces or force signatures [108, 120]. Principally, these works do not

address robot assembly tasks, as an end effector is vital for the completion of a pick-

and-place style objective. Few works have previously investigated the role of within-hand

manipulation for peg-in-hole [122], finding that compliance in a dexterous hand extends

the workspace for task completion success. This prior work utilizes a rigid hand with

tactile sensors and impedance control, which is computationally inefficient compared to the

proposed framework.

Learning-Based Insertion

Regardless of whether a system is rigid or compliant, developing the control policies asso-

ciated with tight tolerance tasks remain difficult [121]. To address this, learning has been

widely performed on such systems – either collecting data through robot interactions in

its environment or from human-in-the-loop demonstrations [110]. Reinforcement learning

and self-supervised learning [123, 124] have been popular, as they enable optimal policy

acquisition without manual data intervention. Conceptually, this feature can be favorable

for manipulation learning, as it allows the robot to sufficiently explore its environment and

collect representative data of its interactions [114,116,125,126]. But it is also time consum-

ing, computationally expensive, and the extensive number of interactions needed to learn
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in a physical environment increases the likelihood of robot damage. It is thus advantageous

to develop planning and control techniques that do not require task-specific learning or

numerous physical interactions, allowing the system to more easily generalize to novel tasks

and environments, as the method proposed here.

Visual Feedback Closed-loop Manipulation

Tremendous progress has been made to adapt control policies reactively with sensing feed-

back. With recent advances in deep learning, a number of prior works learn a visuomotor

controller either by directly mapping raw image observations to control policies [11,127–129]

or by using reinforcement learning based on learned visual dynamics models [130–133]. How-

ever, this method usually requires a nontrivial amount of training data which is costly to

collect in the real world, struggles to transfer to new scenarios, and suffers from the curse

of under-modeling or modeling uncertainties [134]. Our work shares the spirit of another

line of research that decouples the system into individual sensing and planning compo-

nents. In particular, [135] developed a compliant manipulation system by integrating a 6D

object pose tracker and a reactive motion planner. To generalize to objects of unknown

shapes, [136] presents a system that maintains a dual representation of the unseen object’s

shape through visual tracking, achieving constrained placement. Although promising results

of manipulating one or a few objects have been shown, their scalability to other objects or

precision placement tasks remains unclear. In [137], both vision and torque feedback were

used for tight insertion. Our work aims instead to robustly tackle a wide range of high

precision placement tasks by leveraging the synergy between mechanical compliance and

visual feedback, without force or torque feedback.

5.2.3 Proposed Framework

The proposed framework integrates the following components to complete tight tolerance

and open world insertion tasks: a 6D object pose tracker given RGBD data, and a compliance-

enabled insertion algorithm for a passively compliant arm and dexterous hand. As depicted

in the system pipeline (Fig. 5.2), during manipulation, the object tracker (red) asyn-

chronously estimates object poses in the task space, i.e., both the peg and the hole, based
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Figure 5.2: System pipeline: (red) a visual tracking framework trained solely with synthetic
data to estimate 6D pose differences, provides feedback for (blue) manipulation planning and
control of a low-impedance manipulator and a compliant end-effector performing within-
hand manipulation for insertion tasks.

on a learned pose difference model, and provides feedback for the insertion planning and

control algorithm (blue) to compute action decisions based on an arm motion planner and a

learned control mapping of the hand. The following subsections describe these components

in more detail.

Visual 6D Object Pose Tracking based on Synthetic Training

Uncertainty about the task’s state can arise from multiple sources in the target application:

(a) the compliant robot arm, (b) the adaptive hand, (c) the potentially occluded object, and

(d) the location of the hole. Therefore, dynamic reasoning about the spatial relationship

between the peg and the hole is required to achieve reliable tight insertion. This work lever-

ages recent advances in visual tracking that employ temporal cues to dynamically update

the 6D pose of tracked objects. In particular, recent work in visual tracking [77] achieves ro-

bust and accurate enough estimates at a low latency to work with a wide range of objects.

This allows easy integration of visual tracking with planning and control for closing the

feedback loop. Additionally, it is also possible to disambiguate the 6D pose of geometrically

symmetric objects from semantic textures, thanks to jointly reasoning over RGB and depth

data, enabling the overall system to perform a wider range of tasks. Alternative 6D pose

tracking methods, which are based solely on depth data [138,139], often struggle with this

aspect. For instance, the green charger utilized later in experimentation exhibits a 180◦

shape symmetry from the top-down view, whereas only one of the orientations can result

in successfully plugging it into a power strip.
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The tracker requires access to a CAD model of the manipulated object for training

purposes but does not use any manually annotated data. It generalizes from synthetic data

to real-world manipulation scenarios. CAD models for this purpose can be imperfect and

obtained through inexpensive depth scanning processes [140] or from online CAD libraries.

The dimensional error of the CAD model can be larger than that of the tight insertion task

considered – given the adaptability afforded to the system via compliance (see plug insertion

in Sec. 5.2.5). At time t, the visual tracker operates over a pair of RGBD images It and

It−1 and predicts the relative pose of the tracked objects parametrized by a Lie Algebra

representation ∆ξ ∈ se(3). The 6D object pose in the camera’s frame is then recovered by

Tt = exp(∆ξ)Tt−1. During both training and testing, It−1 is a synthetically rendered image

given the pose Tt−1 and the CAD model. During training, It is also synthetic but it is the

real image during online operation of the system. Thus, a sim-to-real domain shift exists

only for the current It image.

The synthetic data generation process is physics-aware and aims for generalization and

high-fidelity by leveraging domain randomization techniques [141], as shown in Figs. 5.3 and

5.4. To do so, external lighting positions, intensity, and color are randomized. The training

process includes distractor objects from the YCB dataset [142] beyond the targeted objects

for manipulation, which introduce occlusions and a noisy background. Object poses are

randomly initialized and perturbed by physics simulation with random gravity directions

until no collision or penetrations occurs. Background wall textures are randomly selected

[143] for each rendering. This rendered image serves as the frame It. In order to generate the

paired input image It−1 for the network, the process randomly samples a Gaussian relative

motion transformation T t
t−1 ∈ SE(3) centered on the identity relative transform to render

the prior frame It−1. During training, data augmentations involving random HSV shift,

Gaussian noise, Gaussian blur, and depth-sensing corruption are applied to the RGB and

depth data in frame It, following bi-directional domain alignment techniques [77]. Training

on synthetic data takes 250 epochs and is readily applicable to real world scenarios without

fine-tuning.

During the task execution, the proposed process tracks all manipulated objects at 30Hz,

and provides 6D poses for the planning and control module (Fig. 5.2). Before grasping, the
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Figure 5.3: Physics-aware, high-fidelity synthetic training data are augmented via domain
randomization.
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Figure 5.4: 6D pose tracking on RGBD image observations streamed from the camera.
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initial 6D pose of each object on the support surface is estimated once via RANSAC -based

plane fitting and removal [144], followed by a single-shot pose estimation approach [78] to

initialize tracking. The tracking process is robust to occlusions and does not require pose

re-initialization during manipulation, which is continuously executed until task completion.

Learning Object-Agnostic Within-hand Manipulation

The employed within-hand manipulation model of a 3-fingered, tendon-driven underactu-

ated hand described is object-agnostic and follows a similar representation to Chapter 3. It

relies solely on the reference velocities of the object to suggest manipulation actions [106].

This learned model is realized by first generalizing grasp geometry – the object is repre-

sented according to the relative pose of the fingertip contacts after a grasp is acquired.

From these contacts, it is possible to strictly define an object frame, X , according to Gram-

Schmidt orthogonalization. More formally, given k points of contact, P = p1, . . . , pk where

pi ∈ R3,∀i ∈ {1, . . . , k} between the fingertips and the object with respect to the hand

frame, we use P to calculate X in a closed form [70]. Notably, the relative position of

contacts in P can sufficiently represent the local geometry of the object in its manipulation

plane. From this observation, it is possible to calculate the contact triangle relationship, or

distance between the fingertips,

T = (||p1 − p2||2, ||p2 − p3||2, ||p3 − p1||2) ∈ R3 (5.1)

where T = (T1, T2, T3) (Fig. 5.5). Note that this representation generalizes object geometry,

but not necessarily object dynamics, as the global geometry, Γ, and associated inertia terms

of the object are disregarded for simplicity.

Given the object frame Xt ∈ SE(3) at time t, it is possible to model the configuration,

and thus the next-state object frame Xt+1 of an underactuated system given an actuation

velocity ȧ based on the system’s energy. With the hand’s joint configuration, q ∈ R
∑k

i=1 ji ,

which has ji joints per finger, the system’s equilibrated joint configuration q∗ can be cal-

culated such that the sum of potential energies between the fingers is minimized. As in

any mechanically compliant mechanism, an underactuated system’s degrees of actuation
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are fewer than that of its configuration, i.e., dim(a) < dim(q). For the adaptive hand,

the fingers are actuated via a tendon transmission routed through the joints, providing a

constraint:

raiȧi = rpiq̇pi + rdiq̇di, (5.2)

where rai, rpi, rdi represent pulley radii of the actuator and joints in finger i, respectively,

and ȧi, q̇pi, q̇di are the velocities of the actuator and joints, respectively (Fig. 5.5). Given

this tendon constraint, and while ensuring Tt = Tt+1, i.e., by maintaining integrity on the

contact triangle relationship, it is possible to solve for the equilibrated joint configuration:

q∗ = argmin
q

∑
i

Ei(qi) s.t. (5.1), (5.2), (5.3)

where Ei represents the potential energy in the ith finger:

Ei(qi) =
1

2
(kpq

2
pi + kdq

2
di). (5.4)

Through Eq. (5.3), which has been shown to successfully transfer physically to an

underactuated hand [106], this work efficiently generates system dynamics data by varying

relationships in T and providing random actuation velocities ȧ to the hand. In doing so, we

fill a buffer of 200k object transitions, (Xt, ȧ) −→ Xt+1, from 50 contact triangle relationships.

By taking the element-wise difference of Xt and Xt+1, we calculate Ẋ ∈ se(3). Given these

action-reaction pairs, we train a fully-connected network to compute the model, or partially

constrained Jacobian:

g : (Ẋx, Ẋy) −→ ȧ (5.5)

that maps the desired rotational velocity of the object about the x− and y−axes to an

actuation velocity of the hand, ȧ ∈ R3.

5.2.4 Insertion Strategy

Assume the geometry of the peg, Γ, consists of two opposing, parallel faces with a continuous

or discrete set of sidewalls connecting them, where, for the set of all antipodal point contacts
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(a) (b)

Figure 5.5: (a) Object geometry can be generalized by its resultant contact triangle rela-
tionship, T . (b) The response of a tendon-driven underactuated finger given actuation is
dependent on spring constants and pulley radii.

on the object’s sidewalls, each pair in the set has parallel contact normal force vectors.

Conceptual examples of Γ could include standard cylinders or triangular prisms. This

section analyzes spatial peg insertion as a planar problem as depicted in Fig. 5.6, i.e., along

cross sections of the object. This approach leverages the notion that in practice we can

rely on compliance and closed loop control to account for any out of plane misalignment as

described in Sec. 5.2.4.

The Condition for Object Insertion

Consider that a rigid peg is grasped such that its antipodal, i.e., set of opposing, contacts

are distanced do from one another across the width of the object. Moreover, the location

of the contacts defines the height, h, of the grasp. Given do and h, it is possible to define

the object’s grasp frame, X ∈ SE(2), with a pose determined by the grasp-contact vector.

The task goal is to insert a peg into its corresponding rigid hole, H ∈ SE(2), which is

parameterized by a width of dh. Given Γ, it is possible to define a manipulation frame,

M ∈ SE(2), defined by a transformation, T , from X , that acts as the initial controlled

frame for object insertion. DeterminingM for generalized geometries is achieved through

PCA, as discussed in the accompanying Appendix A.

In the context of insertion tasks, this work investigates the role of object rotation via
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fingers
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Figure 5.6: (a) Peg insertion is viewed as a planar challenge. (b) For insertion via purely
rotational motion about X , the peg’s edge is aligned directly above the hole with a starting
angle, β0. (c) TranslatingM downward to δ guarantees that a pure rotation will align the
peg with the hole, where δc encourages premature contact and leverages compliance to aid
in alignment. (d) Upon rotation about X , the peg must overcome contact constraints (red
friction cones) of the hole contacts to align for insertion, while aided by virtual spring forces
kc supplied by compliance.

within-hand manipulation while keeping the relative translational pose between the object

frame and the hole fixed. To do so, the process vertically aligns H, M, and X such that

the horizontal component of T is equal to 0. This therefore sufficiently defines an initial

object rotation and sets up spatial peg insertion as a planar problem with a starting angle:

β0 = tan−1(
do
2h

) (5.6)

to satisfy the alignment constraint. It is possible to start in a different angle than β0, but

the position ofM will need to change accordingly. Once β0 is achieved, the system controls

a vertical displacement, δ, betweenM and H, which can be calculated in closed form such

that a pure rotation about X places the object in a state aligned with the hole. This final

angle of alignment, βf , can be calculated as:

|βf |≤ cos−1(
do
dh

), (5.7)

which is dependent on the peg’s two-contact case (Fig. 5.6.d). Thus, the initial insertion
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height δ before rotation is given as

δ = h (cos(β0) + cos(βf )) +
do
2
(sin(β0) + sin(βf )) . (5.8)

The sequential progression of steps for rotation-based object insertion are outlined in

Fig. 5.6. In summary: 1) RotateM such that it aligns withH; 2) TranslateM downward to

δ; and, 3) Rotate about X until the two-contact case is overcome, i.e., rotation of X < |βf |,

and the peg is aligned with the hole. Once satisfied, the remaining actions for insertion

seek object translation downward while avoiding jamming along the sidewalls. To account

for this, this work leverages compliance and controlled object spiral motions [120] provided

by within-hand manipulation.

On the Role of Compliance

While the above formulation holds for rigid insertion in the relaxed planar representation,

the bounds of δ are extremely small for tight tolerance cases (< 1.5mm if perfectly aligned).

Moreover, when considering any out-of-plane misalignment in the true additional dimen-

sion that is not modeled, the peg can easily become off-centered with respect to the hole.

The features inherent to compliance benefit this task, as it not only enables adaptability

to the out-of-plane misalignment, but also allows to relax these strict bounds of δ by de-

veloping a compliance-enabled insertion distance, δc (Fig. 5.6.c). This deviation in depth

is nontrivial to determine in its closed form – as it depends on models of the manipulator-

hand system’s compliance, the forces that can be applied to the object via the hand, and

an approximation of the nonlinear contact dynamics associated with peg-hole interactions

(Fig. 5.6.d). Although difficult to model, a properly tuned translational deviation in δc

towards the hole from δ is advantageous, as it encourages contact between the hole and the

object prematurely so that the contact constraints encourage and assist in alignment before

insertion.
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Insertion Algorithm

The proposed system is controlled by closing the loop through visual feedback. In real time,

the visual tracker monitors the state of the task space; specifically, the relative pose between

the peg and the hole. This relationship is used to adjust the control reference setpoints of

both the manipulator’s joints and the tendons in the hand, regardless of their believed

configuration states. By continually servoing the object’s SE(3) pose relative to the hole,

it is possible to complete tight insertion tasks while adapting to external disturbances and

noisy pose estimates (Sec. 5.2.5).

Vision-Driven Object Insertion: The insertion sequence shown in Alg. 7 begins

with the object tracker asynchronously monitoring the pose of both, the object and the hole.

Once the object is grasped off of the support surface, the precomputed transformation, T ,

via PCA (A.1), from the manipulation frame,M, can be rigidly attached to X .

Algorithm 7 Vision-Driven Object Insertion

Input: Γ, (β0, βf , δc, γ, σ) ▷ object geometry, hyparams(initial object angle, final
object angle, insertion depth, alignment tolerance, step length)

1: T, π1 ← PCA(Γ) ▷ POM transform, principal axis (A.1)
2: tracker.start async perceive(Γ) ▷ start tracking thread
3: tracker.attach transform(T ) ▷ attach T to X forM
4: X ,H ← tracker.get poses() ▷ object & hole 6D poses
5: system.grasp(X , π1) ▷ grasp and lift object
6: hand.rotation servo(tracker, π1, β0) ▷ Alg. 8
7: M,H ← tracker.get poses()
8: arm.move above(M,H) ▷ place edge above hole
9: arm.translation servo(tracker, δc, γ, σ) ▷ Alg. 9

10: hand.rotation servo(tracker, π1, βf ) ▷ Alg. 8
11: system.spiral insertion() ▷ coordinated spiral insertion

Upon doing so, within-hand manipulation is performed such that the initial insertion

angle, β0 from Sec. 5.2.4 is achieved along the principal axis, π1 (Alg. 8). The velocity

references, Ẋx and Ẋy, during this within-hand manipulation process are chosen so as to

minimize any rotation not along this principal axis. Upon reaching β0, the robot arm plans

a trajectory such that the resultant position of the manipulation frame is directly above the

hole. Due to the robot’s imprecision, however, the desired pose ofM above H is often not

accurately achieved.
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At this point, the translation servo method begins by sequentially adjusting the control

reference of the manipulator based on feedback from the object tracker (Alg. 9). Specifically,

given the hyper-parameter γ, if the hole xy-plane translational difference betweenM and H

is within γ, the manipulator will move a step, σ, which can be fixed or adaptive, downward

towards the hole by adjusting the joint target values of the robot. Otherwise, the robot

will move in the Cartesian step, σ, towards aligningM with H. This process is continually

repeated until the vertical threshold, δc, is reached.

Algorithm 8 Within-Hand Rotation Visual Feedback Control

Input: tracker, π1, θ ∈ {β0, βf}
▷ principal axis of rotation, object target angle

State X ,H ← tracker.get poses() ▷ object and hole 6D pose
1: R∆ ← X .R−H.R ▷ relative rotation ∈ SO(3)
2: if θ is β0 then ▷ increase angle for edge insertion
3: while H.R(π1)−X .R(π1) ≤ β0 do
4: Ẋ ← [−R∆(π1x),−R∆(π1y)] ▷ rotate along π1
5: ȧ← hand.model.predict(Ẋ ) ▷ Eq. (5.5)
6: hand.actuate(ȧ) ▷ send action to motors
7: X ,H ← tracker.get poses()
8: R∆ ← X .R−H.R
9: if θ is βf then ▷ decrease angle, align with hole

10: while R∆x ≥ βf or R∆y ≥ βf do

11: Ẋ ← [R∆x, R∆y]

12: ȧ← hand.model.predict(Ẋ )
13: hand.actuate(ȧ)
14: X ,H ← tracker.get poses()
15: R∆ ← H.R−X .R

The hand then attempts to reorient X with H while maintaining a small downward force

between the object and the hole’s edges, provided by system compliance and δc. Orientation

alignment of the peg is solely achieved through within-hand manipulation (Alg. 8); where

the object no longer follows rotations along π1, but now by the true rotational difference

R∆ between the hole and the peg. This process continues until the rotational angle is less

than βf .

The algorithm concludes by performing a spiral insertion technique along the roll and

pitch axes of the object. If the object were unconstrained, the hand’s actuation would

provide a spiral pattern of M, as in related work [108, 120], while the arm attempts to
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slowly translate downward. This coordinated hand/arm motion helps limit jamming and

encourages proper insertion until the object is fully seated into the hole.

Algorithm 9 Arm Translation Visual Feedback Control

Input: tracker, δc, γ, σ
▷ insertion depth, alignment tolerance, step length

1: M,H ← tracker.get poses()
2: whileM.tz −H.tz > δc do ▷ check translation along z
3: E∆x, E∆y, E∆z ← 0, 0, 0
4: if −γ ≤M.tx −H.tx ≤ γ and

− γ ≤M.ty −H.ty ≤ γ then
5: E∆z ← −σ ▷ servo end effector pose downward
6: else
7: ϵx ← X .tx −H.tx
8: ϵy ← X .ty −H.ty
9: E∆x, E∆y ← −sgn(ϵx)σ, −sgn(ϵy)σ

▷ servo translation to align with hole

10: A ← arm.motion planner(E∆) ▷ plan motion delta
11: arm.execute(A) ▷ move end effector
12: M,H ← tracker.get poses()

5.2.5 Experiments

We test the proposed insertion framework using a robotic system comprised of a low-

impedance manipulator for object translation, an underactuated hand performing within-

hand manipulation for object rotation, and a low latency 6D object pose tracker based

on RGBD data (Figs. 5.1, 5.8). The manipulator, a 7-DOF Barrett WAM arm, utilizes

the RRTConnect algorithm in OMPL [145] and is imprecise due to an inaccurate internal

model of its true system dynamics, with translational errors as large as 2.6cm. The end

effector, an adapted Yale OpenHand Model O [146], is a mechanically adaptive hand com-

prised of six joints and three controlled actuators, and is not equipped with joint encoders or

tactile sensors. Changes to the open source design include joint bearings to reduce friction,

and rounded fingertips to assist in within-hand manipulation. Finally, the 6D object pose

tracker, which was calibrated to the robot’s world frame, takes the RGBD images streamed

from an external, statically mounted Intel Realsense D415 camera, and in real-time, esti-

mates the 6D pose of the manipulated object to provide feedback for control.
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Figure 5.7: Experimental objects considered in the Tight Tolerance Tasks and Open
World Tasks. All lengths are in mm and points on object faces indicate PCA-determined
edge manipulation frames. (a) small circle, (b) large circle, (c) pear, (d) triangle, (e)
rectangle, (f) YCB 004 sugar box, (g) YCB 008 pudding box, (h) YCB 009 gelatin box, (i)
YCB 040 large marker, (j) green charger. (k)-(n) YCB 065-cups.

The system is tested via numerous insertion tasks. First, five 3D printed peg-in-hole

objects were designed with < 0.25mm hole tolerances and were painted different colors

and/or patterns, for evaluation on both textured and textureless objects. These objects

are described based on their face geometries: namely, the small circle, large circle, pear,

triangle, and rectangle (Fig. 5.7). Insertion was tested for each of these objects individually,

where we then sequentially isolate individual system components – compliance, control, and

sensing – to evaluate their effects on task success. Finally, we assessed the efficacy of the

approach with six open world insertion tasks, involving nine different objects with diverse

and challenging properties (textureless, reflective, flat and thin shapes, etc.), to underscore

the utility of the framework in complex manipulation scenarios (Fig. 5.8).

Tight Tolerance Object Insertion

This test involved 12 insertions for each of the five objects using Alg. 7. Upon task reset,

objects were placed back onto the support surface in no predefined pose; it was up to the

system to initialize and track this pose and reacquire a grasp. The results, presented in

Table 5.1, depict the planning time, total execution time, number of hand actions used for

within-hand manipulation, and success rate for each object scenario. The large circle had

the highest rate of success compared to any of the other objects, while the triangle had the

lowest. The two objects that did not have curved edges, i.e., the triangle and the rectangle,

were the most difficult out of the five to insert. The interpretation is that the constraints
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of the task, i.e., sharp edges of the object’s face, did not enable system compliance to easily

align the yaw rotation of the object with the hole. This posed a slight challenge for the

relaxed planar insertion strategy from Sec. 5.2.4, and required precise yaw rotation via the

manipulator, which was not required for the other objects.

Table 5.1: Tight Tolerance Insertion Results

Obj. Planning (s) Total (s) Hand Actions Success

Small Cir. 4.1 ± 0.92 94.8 ± 10.78 48.9 ± 8.76 10/12

Large Cir. 3.5 ± 0.52 88.8 ± 11.54 44.9 ± 9.10 11/12

Pear 4.0 ± 1.05 77.9 ± 10.34 35.2 ± 8.62 9/12

Triangle 3.7 ± 2.08 90.9 ± 14.00 27.4 ± 4.60 8/12

Rectangle 6.2 ± 3.53 106.4 ± 23.43 40.9 ± 5.90 9/12

System Analysis

Several ablation studies were performed using three of the five evaluated objects – the

large circle, the pear, and the rectangle – in order to better understand how different

components of the system contribute to task success. In particular, these tests evaluate

the effects of: 1) reducing system compliance via the hand, the arm and the environment;

2) performing insertion with differing levels of feedback, i.e., naive and open loop control;

and, 3) deliberately introducing noise into the object tracker’s pose estimation to simulate

higher perception uncertainty. (Table 5.2). The Appendix A describes how the system

compensated for disturbances.

Reducing system compliance: To test the role of compliance for task success, three

altered system configurations were developed: 1) A system with a rigid, parallel Yale Open-

hand Model GR2 gripper [48] with custom fingertips as to immobilize the object to the end

of a low-impedance manipulator; 2) A system with a rigid 3-fingered Robotiq hand affixed

to the end of a rigid Kuka IIWA manipulator but allowing compliance in the environment

by attaching a standard packing box at the base of the hole; and, 3) The same rigid robot

setup with the Robotiq hand and the Kuka manipulator but with a fixed hole, removing

any presence of compliance. Fig. A.2 in the Appendix highlights the different variations

considered in terms of compliance. Twelve insertions for each of the three test objects were
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performed in each case while following Alg. 7. During task execution, all object rotations

that were performed by the hand originally, were now controlled solely by the manipu-

lator. Results indicate, as presented in Table 5.2, that compliance at some level in the

arm/hand/object system is beneficial for task completion. The worst success rate arises

for a fully rigid system, task, and environment. The Kuka setup with a compliant hole

performed well, especially for the difficult rectangle insertion task, assisted by the precision

of the object tracker and the higher accuracy of the rigid Kuka manipulator. Planning time

between systems varied due to differences in computational resources, and thus it is not

directly compared.

Naive and open loop control: These tests evaluate the effects of relinquishing feed-

back by limiting the amount of information transferred from the tracker to the insertion

algorithm. This is tested both via naive control and an open loop configuration of the sys-

tem. Naive control attempted to perform the same sequence of actions as in Alg. 7, but did

not use any within-hand manipulation of the object after grasping, i.e., visual servoing was

purely translational with the manipulator and Alg. 8 was not used. The compliant hand in

this case effectively acted as a remote center of compliance [117,147]. In open loop testing,

a single plan was computed and executed from the starting grasp configuration up until

object insertion without utilizing in-hand manipulation or any visual feedback during the

task, i.e., neither Alg. 8 or Alg. 9 were used. Notably, both of these ablations performed

very poorly in testing, as the imprecision of the manipulator and lack of a controlled object

rotation to aid in insertion, drastically impeded task success (Table 5.2).

Noisy pose estimate: The final ablation experiment evaluated how the accuracy of

pose estimation played a role in task success. While following the same sequence of actions

as in Alg. 7, uniformly sampled noise was introduced into the pose output of the tracker at

two different levels. The first test introduced uniform sampled noise within 5mm and 5◦ to

the pose estimate. The second test introduced uniform noise within the range of 10mm and

10◦. As indicated by the results in Table 5.2, the system was largely able to compensate for

this noise at the 5mm/5◦ level, successfully completing 7 for the large circle, 4 for the pear,

and 4 for the rectangle out of 12 executions. The additional noise from the 10mm/10◦ test

drastically decreased success. The total task time for both noise level increased significantly
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Table 5.2: System Ablation Analysis

Obj. Planning (s) Total (s) Hand Actions Success

R
e
d
u
c
in
g
C
o
m
p
li
a
n
c
e

Rigid Hand / Compliant Arm / Rigid Hole
Large Cir. 7.8 ± 1.65 62.3 ± 8.74 - 6/12

Pear 11.0 ± 6.76 76.4 ± 28.10 - 5/12
Rectangle 12.6 ± 4.37 92.3 ± 24.95 - 3/12

Rigid Hand / Rigid Arm / Compliant Hole
Large Cir. 1.4 ± 0.12 65.6 ± 3.53 - 9/12

Pear 1.5 ± 0.13 68.9 ± 3.92 - 4/12
Rectangle 1.5 ± 0.12 71.3 ± 4.35 - 12/12

Rigid Hand / Rigid Arm / Rigid Hole
Large Cir. 2.2 ± 0.37 88.9 ± 10.48 - 6/12

Pear 2.2 ± 0.25 91.4 ± 8.46 - 0/12
Rectangle 2.1 ± 0.14 90.4 ± 13.09 - 2/12

L
im

it
in
g
C
o
n
tr
o
l Naive (omit Alg. 8)

Large Cir. 4.8 ± 1.78 78.0 ± 22.64 - 2/12
Pear 7.7 ± 1.25 81.9 ± 10.13 - 0/12

Rectangle 8.9 ± 0.95 103.5 ± 5.78 - 0/12
Open Loop (omit Alg. 8 and Alg. 9)

Large Cir. 3.8 ± 1.09 53.47 ± 9.78 - 0/12
Pear 5.1 ± 1.62 61.96 ± 4.01 - 0/12

Rectangle 5.1 ± 1.22 65.45 ± 5.18 - 0/12

N
o
is
y
S
e
n
si
n
g

Uniform Noise – 5mm / 5◦

Large Cir. 5.9 ± 0.99 127.5 ± 18.11 50.6 ± 18.23 7/12
Pear 10.7 ± 2.29 138.9 ± 12.46 40.2 ± 7.99 4/12

Rectangle 9.9 ± 1.70 137.1 ± 6.28 49.7 ± 4.19 4/12
Uniform Noise – 10mm / 10◦

Large Cir. 11.7 ± 2.29 148.5 ± 12.46 39.6 ± 11.19 1/12
Pear 12.6 ± 0.33 134.1 ± 8.82 34.9 ± 7.19 0/12

Rectangle 13.4 ± 1.97 212.6 ± 13.58 51.9 ± 11.79 0/12

112



as compared to the baseline trials in Sec. 5.2.5. This increase in execution time is attributed

to Alg. 9, where noise continually moves M outside of the γ threshold insertion region,

so the manipulator slowly oscillates back and forth until δc is achieved. Conclusively, the

ability of the algorithm to complete sub-mm accuracy insertion tasks with purposefully

added noise indicates the robustness of the overall framework.

Open World Tasks

Finally, a series of open world tasks were attempted to highlight the utility of the proposed

system in complex manipulation scenarios: marker insertion, plug insertion, box packing,

and cup stacking (Fig. 5.8(e)). These tests mostly utilize objects contained in the YCB

Object and Model Set [142], which provides object CAD models for tracking. The charging

plug, however, was 3D scanned using [140] with an inexpensive RGBD sensor, providing

a coarse representation of the true object model (Fig. 5.7). The goal for each task was

to grasp, manipulate, and insert the object so as to reach its desired hole configuration,

which was predefined depending on task requirements. Of the six tasks, three – gelatin

box, pudding box, and sugar box – came in the form of packing, where a single box was

removed from the case and had to be replaced. Two other tasks – marker insertion and

plug insertion – were performed such that the marker was placed into a holder and the plug

was inserted into an outlet. The most difficult of the open world tasks corresponded to

cup stacking. This task requires sequential tracking of both the cup that is to be stacked

on top of and the cup being manipulated. The proposed system is able to complete this

task placing four cups successfully on top of one another. These evaluations showcase the

tracking and manipulation capabilities of the proposed system, which are also highlighted

in the supplementary video.
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Figure 5.8: (a) System setup overview. (b) Tight tolerance insertion of 5 peg geometries,
highlighting the observational/external view and the tracked 6D pose via the RGBD camera.
(c) System ablations include reducing compliance of the hand and the arm, in addition to
deliberately adding noise to the pose estimate. (d) The open world task of plug insertion is
highlighted, showcasing the sequence of actions taken from grasp to insertion. (e) Five other
open world tasks were also evaluated – box packing, marker insertion, and cup stacking.
Please refer to the supplementary video for a complete overview of evaluated tasks.
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5.2.6 Discussions

This chapter section presented a vision-driven servoing framework that tackles the problem

of controlling compliant, passively adaptive mechanisms for precision manipulation. The

framework is able to perform 5 tight tolerance and 6 open world tasks – regardless of whether

the object CAD model was imperfect or if pose estimate feedback was noisy (Sec. 5.2.5).

In summary, the contributions of this work are fourfold:

• Precision control with minimal on-board sensing: The framework can reliably

complete an array of insertion tasks – including those with tight tolerances – with-

out force-torque sensors on the manipulator or tactile sensors/joint encoders on the

compliant hand.

• Passively compliant within-hand manipulation for insertion: The system

utilizes controlled hand actions to extend the task’s workspace and provides an added

layer of compliance to limit object insertion jamming.

• Vision-driven feedback controller: The servoing insertion algorithm is able to

generalize to different object geometries, and can be easily utilized for other robot

assembly and insertion tasks given compliance.

• Utilizing the environment to solve the task: The control strategy intentionally

leverages premature contacts by relaxing the rigid constraints of the task, which is

possible and effective given compliant systems. In this way, this work applies the

principle of ”extrinsic dexterity” [107] in the context of insertion tasks with tight

tolerances.

There are several aspects of the proposed system that are worth pursuing in future

work: 1) Adapt the insertion algorithm so as to better leverage compliance for complex

out-of-plane geometry, such as in cases of sharp edges or non-convex objects; 2) Optimize

a passively compliant hand design that is capable of performing both finger gaiting and in-

hand manipulation with a large workspace; 3) Develop and integrate a model-free perception

tracker into the visual feedback framework to reduce dependence on the object’s CADmodel;

4) Incorporate learning into the insertion algorithm so as to first automatically tune any
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object-specific hyperparameters and then incrementally develop more effective strategies in

a RL fashion; and finally, 5) Increase difficulty of the tasks by performing more advanced

and sequential assembly procedures, such assembling toys or simple pieces of household

furniture.
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5.3 Force-based Tight Tolerance Insertion

5.3.1 Introduction

Robots interact with the world through physical contact. Contact has been studied in the

literature for decades and can be conceptualized a number of ways, but in its most fun-

damental sense, contacts are interaction-based constraints imposed on the relative motion

between objects. As humans, we often rely on contact to change the state of our environ-

ment, whether it be removing keys from a bag or cleaning a dirty dish. While seemingly

simple, contact is quite complex in that it requires accurate parameter estimation in order

to sufficiently predict its current state, i.e., static, stick-slip, or slip conditions. Previous

works have tried to estimate various properties of contact during manipulation, e.g., the

location of the contact [148], frictional and curvature properties [47,55], slip conditions [18],

etc. but have witnessed many bottlenecks.

Fundamentally, contacts define constraints and constraints define the available degrees-

of-freedom (DOF) of an object. In free space, an object is able to move in 6-DOF, but

a non-cylindrical peg inserted into a slot is only able to translate in 1-DOF. When there

exists some degree of uncertainty in the estimation of contact, the calculated constraints

can be non-representative of the system’s true state. For instance, let’s assume there exists

little uncertainty in the estimation of point contact locations. Here, we can claim that the

restricted motion of an object with two point contacts may be similar or even identical

in nature to the constraints imposed on an object with 100 edge point contacts on or

near a single axis. In a practical sense, this distinction is insignificant in the free DOFs

of the object, and merely adds needless computation. Now, let’s be more practical and

assume there does exist some degree of uncertainty in our estimation of contact locations,

even in a single point out of the 100. This calculation may estimate additional constraints

placed on the object which are not physically valid. Thus, instead of explicitly defining the

state of every contact between a robot and its environment, which is quite computationally

expensive and is gravely subject to uncertainty, we in this work abstract out individual

contact properties and are conversely interested in contact formations, or more generally,

the constraints placed on an object’s motion when in contact with its environment.
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Figure 5.9: Object insertion can be conceptualized as the continual addition and modulation
through time of an object’s constrained degrees-of-freedom. By continually modulating
forces once constraints are detected, tight tolerance insertion can be achieved without a
priori knowledge of the object geometry or exact hole pose for convex objects.
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Contact formations can be conceptualized as a grouping of contact sets that constrain

an object in similar ways [149]. For instance, various contact scenarios could constrain

either some translational DOFs, e.g., sphere in tube, of an object or all translational DOFs,

e.g., sphere in case, and the set of all contact groupings that constrain an object in a similar

way would be considered in a contact formation. Traditionally, acquiring and maintaining

contact formations on a real robot platform was difficult due to an inability to practically

modulate forces between two bodies over time. Within the past decade, a great deal of

work has addressed the concept of dealing with uncertainty in robot mechanics–specifically,

the ability to adapt to external forces as to continually maintain contact with an object.

Compliant manipulation frameworks, either in the form of active [108] or passive architec-

tures [115, 117], enable this ability–allowing a system to kinematically adapt to uncertain

environments and maintain desired forces. This introduces the idea of compliance-enabled

contact formations, which are leveraged within this work to maintain a desired type of

contact during the task.

Combining these ideas, this work investigates the applicability of controlling tight tol-

erance insertion tasks via the chaining of contact formations. Specifically, we leverage a

control approach that modulates forces in controlled directions, and by continually adding

forces along specific axes until contact, i.e., constraints, we transition between different con-

tact formations until the task is successfully completed (Fig. 5.9). This approach utilizes

external contact as a means of constraining the object’s potential motion [107], which in

turn limits uncertainty of the object’s current configuration. While utilizing a compliant

robot, this system aids in both acquiring and maintaining a desired contact configuration.

Moreover, we show how in-hole jamming is limited due to this compliance–functioning sim-

ilarly in concept to a remote center of compliance (RCC) device [150,151]. Retrofitted with

a 6-axis force/torque sensor at the end effector and an in-hand camera, we monitor the

state of the object and servo to its desired goal forces and axial alignment. We can thus

summarize our contributions:

1. Our algorithm is an object-agnostic procedure that does not require a priori knowl-

edge of the object geometry, exact hole position, or exact hole orientation. To our
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knowledge, this is one of few works that can insert an object when axial rotation is

largely unknown (> 40◦).

2. We do not require complex analytical or computationally expensive learned models

of contact dynamics–our method relies solely on the idea of validating constraints via

axial force application through time.

3. This method is conceptually straightforward, as it solely relies on following a desired

trajectory in Contact Formation-space, and can thus be run in real-time on a physical

robot.

4. We justify the true utility of using compliant systems for tight tolerance, contact-rich

tasks by quantifying reconfigurability. Specifically, we quantify slip conditions for our

underactuated hand, and show how the hand reorganizes its contacts when excessive

forces are applied, which helps eliminate in-hole jamming.

5.3.2 Related Work

Generalized robot assembly has been investigated for decades and the development of a

practical, holistic solution has faced many challenges [94]. Elucidating this grand challenge

can be found in previous works with: standard cylinders [108–110], multiple-peg objects

[111, 112], soft or compliant cylinders [113], industrial inserts [114], and standard open

world objects [115–119]. In an attempt to extend previous work, we in this work outline a

method that underscores the idea of generalization, in that our method provides a practical

solution to insertion when there exists positional and orientational uncertainty of the hole

pose, with minimal knowledge of the object geometry.

Peg-in-hole Assembly

Approaches to solving generic assembly tasks can be divided into two different categories:

analytical approaches and learning-based approaches. In the former, approaches utilize con-

tact models to reason about their state conditions [112, 113], controlling the manipulator

based on force/torque sensor readings [109,120]. Model-based approaches using vision and
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rigid systems have been difficult to implement, as uncertainty in the manipulator’s pose

can create dangerously large forces [121]. Compliance has become a key component to

overcoming this issue, both in software-based [108] and hardware-based [115,117] architec-

tures. Many works have disregarded the use of a robot hand, which would be particularly

required for pick-and-place tasks. Two previous works utilized a dexterous hand [122,152],

where both found it advantageously extended the robot’s workspace. In both cases, a priori

knowledge of the hole pose was available.

Learning-based solutions help deal with robot sensor and model uncertainty, and typi-

cally require physical environment exploration or some form of human-in-the-loop demon-

strations [110]. Reinforcement learning and self-supervised learning [123, 124] have been

popular approaches, allowing the robot to interact with its environment and sufficiently

explore desired regions [114,116,125,126]. Notably, learning manipulation policies is both,

time consuming and data intensive, which increases the chance of damaging the robot.

While attempting to maintain a model-free nature but also limiting the need for expen-

sive exploration, we are interested in forming a solution that can achieve reliable insertions

of tight tolerance by solely using force data and vision feedback, and without a priori

knowledge of the hole pose.

Contact Formations

Contact formations ”provide a qualitative description of how 2 or more objects make con-

tact with one another (e.g., vertex to surface, edge to edge)” [149]. This formulation is

advantageous, in that it implicitly defines the contacts and thus constraints imposed on

an object’s motion. Contact formations have been computed in different ways: from using

CAD models [153] to probabilistic frameworks based on interaction [154]. From knowing

these contact formations, other works have utilized them in planning [155] and control

frameworks [156]. Fundamentally, the ability to group together different combinations of

contacts that define the same or mere similar constraints, can be a powerful tool for defining

more capable robot manipulation capabilities.
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Figure 5.10: The Contact Formation-space (CF-space) of an insertion task can be con-
ceptualized as an explicit organization of different contact formations that share borders
according to constraint similarity and possible transitions. Transitions between contact
formations are represented when constraints are added or removed to the state of an ob-
ject. By controlling paths through a CF-space from light (few constraints) to dark (more
constraints), the object follows a progression towards insertion. Note: This depiction of
contact types is not exhaustive and other intermediate formations may be possible.

5.3.3 Methodology

We are interested in solving a generalized peg-in-hole problem by leveraging compliance-

enabled contact formations–the concept that object constraints can be more easily acquired,

broken, and remade when operating within a compliant robot’s “reconfiguration range”

[157]. Conceptually, compliance allows the robot to convert a traditionally difficult force

control problem into a position/velocity control problem, as there now exists an ability to

“take up the slack” in control uncertainty. A F/T sensor is leveraged to modulate forces

closed-loop. This is particularly advantageous for maintaining a contact formation, as now

we can more easily ensure the system maintains constraints while operating along a desired

path.

Fundamentally, contact formations (CF) represent groupings of discrete positional and

physical relationships. Solving the insertion problem can thus be framed as a traversal

from a starting, CF0, toward a final, CFn, transitioning through intermediate CFs, i.e.,

CFpath = {CF0, CF1, . . . , CFn} (Fig. 5.10). In this work, we demonstrate the efficiency of
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this approach by following a fixed path in CF-space.

Formally, transitioning from one CF, CFn, to a new CF, CFn+1, along a trajectory

in CF-space is comparable to adding or removing constraints on the object’s available

DOF. Thus, the role of compliance serves to ensure that a single desired CF is maintained

while manipulation is occurring via force modulation, and transitions are detected when

the motion of the object is impeded by the environment. Once a variational change in F/T

signals are felt by the robot, a contact formation change is detected, and the system has

transitioned in CF-space. Conceptually, move along a single axis until no longer possible,

and while maintaining that force, move orthogonally until another constraint is added.

The theory of controlling compliance-enabled contact formations is that constraints can

be continually added until the task of insertion is complete. Notably, any DOF that is not

currently constrained can be controlled to perform other tasks without modifying the current

CF of the system. For example, an edge contact between an object and the hole’s surface

allows the robot to explore via sliding until a lateral force is detected and thus a new CF is

achieved. It is important to note that under this additive force contact process, explicitly

estimating the current CF is possible if the starting CF is known and the transitions can

be detected via F/T signals.

Assumptions and Prior Knowledge

By relying on F/T sensing for environment perception, our algorithm leverages the following

priors:

• The object starts in a stable, centered, and upright grasp.

• CF0 has 0 constraints, i.e., 6 free DOFs.

• The hole is somewhere within a known 2D workspace boundary (x/y).

• Minimal knowledge of the object’s face type is known, either circular or non-circular.

• There exist a hole with positive tolerance matching the grasped peg within the

workspace.

• There exists a low contact friction interaction between the object and the hole.
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CF-space Insertion Algorithm

Our approach follows a desired path in CF-space, as defined through a total of 7 steps. For

ease of notation, we set the object frame as an orthogonal frame with the x−axis pointing

toward the direction of the object motion on the hole surface plane, and the z − axis

pointing downward. For each step, we provide a corresponding implicit CF control target.

Although we define a set of values for force modulation, this is for clarity and is in practice

robot-specific (see Sec. 5.3.4).

Let’s assume we can detect the object forces, F = {fx, fy, fz} and torques, T =

{τx, τy, τz}, during insertion. Our goal is for the robot to traverse through a desired trajec-

tory of CFs {CF0, . . . , CF5} (Fig. 5.9). We outline the algorithm in pseudocode below, and

provide a breakdown on a real robotic system in Sec. 5.3.4.
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Insertion Pseudocode

1. Reaching the hole plane

Current constraints: None

Target constraint: (+fz, 1.5N)

Implicit CF targets: (CF1) point or edge on face

Additional motions:

• Lateral exploration within the workspace area, randomly selecting x/y direction

within workspace limits.

• In-hand manipulation to tilt the object toward the direction of the lateral motion,

to ensure an edge/face contact, and avoid a face/face contact.

2. Searching for the hole

Current constraints: (+fz, 1.5N)

Target constraint: (+fx, 0.7N)

Implicit CF target: (CF2) 3-point contact with hole

Additional motions: Lateral exploration as previous step.

3. Wedging

Current constraints: (+fz, 1.5N), (+fx, 0.7N)

Target constraint: (+fy, 0.7N)

Implicit CF target: (CF3) 4-point contact with hole

4. Rotational alignment of peg and hole

Current constraints: (+fz, 1.5N), (+fx, 0.7N), (+fy, 0.7N)

Target constraint: (+τz, 0.1N/m)

Implicit CF target: (CF4) hinge-type contact

Note: This step applies only to non-cylindrical objects.

5. Correcting upward tilt

Current constraints: (+fz, 1.5N)
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Target constraint: (+fx, 0N), (+fy, 0N)

Implicit CF target: (CF5) Prismatic joint-type contact

Additional motion: Rotation around x− and y − axes to minimize the accumulated

angle between the object and the hand due to fingertip slip during the previous steps.

This rotation is performed both with in-hand manipulation and arm motions.

Note: The lateral forces are now minimized to avoid jamming the object. This also

helps centering the object in the hole if the peg rotation is not perfectly centered on

the object’s center of mass. The angle information is provided by extracting the 3D

pose of a marker placed on the surface of the object as seen from the palm camera.

6. Inserting peg

Current constraints: (+fz, 1.5N), (+fx, 0N), (+fy, 0N)

Exit condition: When the fingertips start touching the hole surface or the object hits

the hole bottom, we switch to disengagement. This can be detected as a sharp increase

in fz.

Note: We have already reached the CF state that enables peg insertion, thus the

system maintains it while the final free DOF, i.e., the z−axis translation, is controlled

to perform the final insertion motion.

7. Detaching hand grip and retracting arm

Action: The hand opens and the arm returns to its origin position in an open loop

motion.

5.3.4 Experiments

We evaluate our algorithm on a low-impedance manipulator and a compliant, underactuated

hand (Fig. 5.11). The manipulator, a 7-DOF Barrett WAM, utilizes the RRTConnect

algorithm via OMPL [145] for global planning and is controlled locally via a Jacobian-

based velocity controller. The manipulator is imprecise due to an inaccurate internal model

of its true system dynamics, which further challenges our algorithm’s robustness. The end

effector, an adapted Yale OpenHand Model O [49], is a passively adaptive hand consisting

of three actuators and six total joints. The hand is not equipped with tactile sensors or joint
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Figure 5.11: A Yale OpenHand Model O and a 6-axis force/torque sensor are affixed to the
end of Barrett WAM manipulator. Inside of the palm of the hand, an in-hand camera setup
is fabricated as to monitor the state of the object during manipulation via an AprilTag.

encoders, as to reduce weight and cost, making estimation of the true system state difficult

during manipulation [100]. Modifications to the readily available open source design include

rounded fingertips, as to facilitate in-hand manipulation, and bearings within the joints.

An in-hand manipulation controller is devised, as in [106], and is utilized for fine motor

control of object orientation up to ±20◦. Connecting the hand to the arm is a 6-axis ATI

force/torque sensor sampled at 30Hz. Finally, a camera is fabricated into the palm of the

hand as to enable the monitoring of object poses during manipulation via AprilTags [51].

The algorithm is validated through a variety of experiments. In our first experiment,

we develop a linear pusher, comprised of a leadscrew and a stepper motor, to displace

objects along different axes of the gripper’s workspace. During this test, we measure the

forces exerted on the object by the pusher and note the amount of force the gripper can

resist before fingertip slip occurs. Thereafter, we test our algorithm with tight tolerance

(<0.25mm) objects, objects commercially available in a children’s insertion toy, and two

tasks within the NIST Assembly Task Board #1 [158] (Fig. 5.12).
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Figure 5.12: Tested objects can be classified into three categories: Tight Tolerance Tasks,
Insertion Toy, and NIST Assembly Task Board. Objects are referenced according to their
face geometries: (a) circle, (b) pear, (c) large triangle, (d) rectangle, (e) cube, (f) small
triangle, and (g) clove. Subfigure (h) illustrates the insertion toy’s hole layout with desig-
nated search spaces in green. NIST objects (i) and (j) are referred to as the plug and gear,
respectively.

(c)

(b)

(a)

Figure 5.13: An object is pushed along the (a)x−, (b)y−, and (c)z − axes with a linear
pusher to evaluate the force plateau along each dimension, or more specifically, the amount
of force the hand can resist before slip occurs.

128



Quantifying Axial Compliance

First, we are interested in quantifying the compliance of our system. Conceptually, a purely

compliant system with fixed contact could comply indefinitely until a hard stop is reached,

but practically for grippers, there exists a limit in which the forces applied to an object can

be resisted by fingertip contacts. This information is valuable to quantify as it enables the

system to predict when slippage may occur, which can in turn be used to inform contact

formation switching.

Given the linear pusher operating at a velocity of 3mm/s, we push the (a) circle grasped

by the manipulator along the x−, y−, and z − axes for a duration of 12 seconds and

over six trials. After each trial, the system is systematically reset. We record the forces

measured by the F/T sensor via the pusher during each trial, and plot the mean and

standard deviation for each evaluation (Fig. 5.13). Note that for each linear push, a force

plateau is distinguishable, at ∼1.5N for the x− and y − axes (Fig. 5.13(a)(b)) and at ∼4N

for the z − axis (Fig. 5.13(c)). These plateaus correspond to the hand’s ability to resist

forces in corresponding directions, or more physically, the point at which static friction of

the contact is overcome and a new hand-object configuration is realized.

This data is valuable in that we are able to quantify the stable contact operating region

given an external force. Once a force level is exceeded, sliding occurs and the hand-object

state reconfigures until stability is once again realized. We can use these force plateaus for

defining modulating forces for our algorithm in Sec. 5.3.4.

Tight Tolerance Insertion

Rectangle Case Study: With knowledge of the force plateaus, we utilize this information

to acquire and maintain contact formations. Leveraging our algorithm (Sec. 5.3.3), we

set target modulating forces to 0.7N, 0.7N, and 1.5N along the x−, y−, and z − axes,

respectively, which is ∼40-50% of the maximum force before slippage occurs.

In our first experiment, we attempt to insert the tight tolerance (d) rectangle with

an initial 27.1° axial offset along the object’s z − axis (Fig. 5.14(a)). Notably, the exact

location of the hole is unknown, and the system is given a search space of 8cm×8cm. The

129



Table 5.3: Metrics for Object Insertion Experiments

Obj. Tol. (mm) Explore (s) Insert (s) Offset (◦)

(a) circle 0.25 37.2 28.0 ∗n/a
(b) pear 0.25 31.7 94.7 41.1
(c) l. triangle 0.25 34.1 65.8 29.8
(d) rectangle 0.25 44.2 48.1 27.1

(e) cube 3.0 27.3 30.8 29.2
(f) s. triangle 2.1 45.1 21.2 25.0
(g) clove 2.6 63.2 19.4 23.7

(i) plug 0.9 29.8 31.0 36.2
(j) gear 0.1 27.9 21.4 ∗n/a

∗not applicable for pegs with circular faces

process begins by first finding a downward force, i.e., the first constraint, and choosing

an exploration direction (in this case +fx) within the search space until an additional

constraint is detected (transition 3). The additional force spike on the x− axis signals the

hole’s perimeter and a force transition begins. This process is evidenced in Fig. 5.14(b),

where forces are continually added and modulated around setpoints for states 1-7 (Sec.

5.3.3). Note that although compliant, the WAM robot has difficulty modulating velocities,

and thus forces, due to controllability. Moreover, forces in Fig. 5.14(b) are represented in

the world frame to represent rotations during steps 4-5 and are smoothed for clarity, so

force spikes are not represented.

All Objects: Generalization is underscored by our ability to insert objects of varying

convex, or near-convex, geometries–specifically pegs with circle-, pear-, and triangle-shaped

faces (Fig. 5.12). The result of our evaluations with tolerances, exploration times, insertion

times, and offset degrees is presented in Table 5.3(a-d). During evaluation, we noted that

the (a) circle was the easiest, as it did not require z−axis offset control. The other objects

(b-d), were more difficult and posed various challenges. First, the initial offset was different

for each, ranging from 27.1° to 41.1°. Objects (c) and (d) had sharp edges which encouraged

jamming, whereas object (b) presented difficultly due to its non-convexity. Overcoming

these challenges, we were able to complete insertions successfully with objects of <0.25mm

tolerance and without prior knowledge of the hole pose (Fig. 5.14(c)).
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Figure 5.14: The progression of insertion is depicted in (a), where an object goes from free
space (0 constraints) to inserted (5 constraints) into its goal configuration. (b) During this
process, forces are modulated and added through different steps in the insertion task (forces
are smoothed and placed in the world frame for clarity). (c) We evaluate this algorithm
with tight tolerance tasks, insertion toys, and objects from the NIST Task Board.

Open World Insertion Tasks

Beyond our tight tolerance evaluations, we were interested in applicability of our method

to open world tasks. Our first experiment is with a commercially available children’s toy

consisting of different object geometries and with a hole tolerance of approximately 2.5mm.

Similar to the previous experiments, the pose of the hole is unknown, and the search area is

now confined to a 6.4cm×6.4cm space (denoted in green in Fig. 5.12(h)). Here, we attempt

to challenge the exploration component of our algorithm, ensuring the object started at

the edge of the search space. All insertions were successfully completed, with the longest

exploration phase of 63.2 seconds for the (g) clove. Interestingly, the non-convexity of the

clove did not complicate the insertion process as much as originally believed, as the round

edges of the object helped limit jamming from occurring.

Our final experiment evaluated plug and gear insertion from the NIST Assembly Task

Board (Fig. 5.14(c)). The gear task is interesting in that the peg-in-hole paradigm is

transformed instead into a hole-on-peg schema. This was not a problem for our system,

as the search pattern was instead completed on the bottom of the hole, i.e., the gear,

instead of by using a peg. Similarly, the plug insertion with a relaxed plunger spring was
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completed with ease, which started with an z − axis offset of 36.2°(Table 5.3). These tests

underscore the practicality and generalizability of our method, which is further showcased

in the supplementary video.

5.3.5 Discussions

This work presents a method that leverages compliance-enabled contact formations as a

step towards tight tolerance insertion for robots. Our algorithm is simple, yet mechanically

grounded, and exploits the concept of reducing uncertainty through additive contact con-

straints, i.e., manipulation funnels. Notably, in this work we do not need to utilize costly

learning frameworks or system-specific, idealized analytical models–this method is effective

yet did not require a single equation to describe in detail.

The authors are excited about this preliminary exploration, as our experiments illustrate

validity of our approach for future applications. As an attempt to not overclaim contribu-

tions, the authors want to be forthcoming on known limitations that will warrant future

investigation:

1. We cannot claim theoretical guarantees that an insertion will always be successful. In

simulation, we verified that convex objects of non-negative tolerances should always

succeed, but guarantees are not as clear for all non-convex circumstances.

2. Hole geometry requires a low-frictional “platform” for object exploration in order to

find constraints. If this platform has variable friction, contact states may be transi-

tioned prematurely and cause failure.

3. Negative tolerance insertion would be unlikely due to the maximum forces the system

can apply (Sec. 5.3.4). A redesign of the end effector to apply a greater amount of

force (∼5-10N) would be beneficial for varied tasks.

Overall, the authors believe compliance will continue to prove invaluable for advance-

ments in robot manipulation. By investigating how to build more capable end effectors and

by developing robust control strategies for non-convex object insertion, our method should

extend to a vast array of everyday insertion tasks for service robots of the future.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, I explored ways in which we can observe, control, and plan compliant robot

manipulation online. Fundamentally, compliance benefits a system in its ability to passively

adapt to the uncertainty a robot has with the world. This adaptive, and somewhat emergent,

nature is beneficial in many cases a robot encounters, but also adds intricacies associated

with planning and control. This realization leads us to the overarching theme of this thesis:

∼ Complex robots complicate control; keep designs simple and exploit emergent behavior ∼

I began my story by understanding ways in which we can observe the state of a hand-object

system – developing a generalized approach as how to predict when various contact phenomena, such

as sliding, drop, or stuck cases were likely to occur. I showed just how far my generalization went

by training on one robot hand and testing on others. I also provided theoretical bounds by which

my method should hold. We generally found that kinematics and grasp mechanics were enough to

describe state, and these metrics can be extracted solely through visual tracking and without any

other sensing.

As we learned more about ways to understand state, and that we could sufficiently define the

general state of a hand-object system purely through kinematics, I investigated ways to control a

grasped object. To challenge our approach, we took our planar problem and made it spatial, i.e.,

3D, and developed an energy-based model to describe fingertip manipulation with an underactuated

hand. As we found initially, our model became slightly inaccurate during online manipulation due

to changing of kinematic parameters, e.g., effective link lengths due to rolling, and was also subject
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to only fully constrained, point-to-point trajectories. To overcome these obstacles, we introduced

our final method of controlling such hands through an online Model Predictive Control framework.

Thereafter, by being able to observe and control the state of a hand-object system, we were finally

interested in in-hand planning for increasing the workspace of the robot. Succinctly, fingergaiting

is the act of freely making and breaking contact with an object during manipulation. As contacts

are made, different motion manifolds are available to the robot. Planning between these manifolds,

i.e., where and when the robot should make and break contact, becomes the focus of this work.

Generally, we find that our bidirectional multi-modal planning approach is beneficial in that it is a

fast, online approach that can recover from external perturbations, which is only possible because

of the compliance of the system. Formally, we show how modal transfer configurations turn into

modal transfer regions, underscoring the main benefit of planning with compliant robots.

To conclude this thesis, we wanted to expand our findings for in-hand manipulation to those

of tight tolerance and open world assembly tasks. Empirically, we discussed and evaluated how

compliance enables us to “take up the slack” in modeling uncertainties with our robot, and allows

us to plan and control online whole-arm trajectories faster and more effectively. Fundamentally,

our system was able to complete traditionally difficult or impossible insertion tasks with simple

controllers and simple sensors, underscoring our continued narrative for the benefit of compliance

for the future of robot manipulation.

6.2 Lessons Learned and Future Work

Though this work makes progress in realizing fingertip-based in-hand manipulation and generalized

whole-arm assembly for robotics, there is much work still to be done. First and foremost, and very

notably, the manipulation capabilities we have been able to provide on physical systems are still

very elementary – these mainly consist of picking up simple and convex objects, fidgeting with it,

and placing is as needed. In fact, I would likely characterize these capabilities as being somewhat

similar to a 2-3 year-old human’s. The assumptions we imposed on our manipulation procedure in

much of this work, e.g., fingertip-based manipulation, low object mass, are not ever so apparent in

daily human manipulation. Thus, extending this study to whole-hand control, i.e., using proximal

phalanges of the hand, would especially be necessary.

Beyond these higher-level critiques of the manipulation capabilities we were able to accomplish,

there is still much work to be done on the theoretical formulation associated with compliance in

manipulation. As we continued through this research and thought about compliance in terms of

energy, we identified an interesting formalization that needs to be made – the concept of energy-
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based constraints on object motion represented as funnels. Manipulation funnels in the literature

as originally presented by Mason [22] had “hard” constraints, as they were mostly in terms of

geometry/kinematics. Through our studies, we find that there exist “hard” and “soft” constrained

regions in the form of a differentiable funnel. This true formalization begs much future work, e.g.,

mathematical properties of funnels, representation of funnels, and control through concatenated

funnels. I look forward to investigating this idea more with colleagues in the future.

The lessons learned from this work were numerous, but I will attempt to highlight just a few.

First and foremost, we have shown that high fidelity tactile sensing is not necessary for tasks that

were once thought to be impossible without it. By closing the control loop through vision, we were

able to accomplish an array of tasks without complicating hand design. Second, sometimes having

control over everything really equates to having control over nothing. Throughout this work, we

exploited the properties of compliant mechanisms, which were the sole reason we were able to make

such progress with these tasks in the first place. As we were able to acquire and maintain a grasp

without the already computational overhead of impedance/admittance/stiffness control solutions on

fully actuated hands, this facilitated all research described in this thesis. And, finally, manipulation

is a fundamentally difficult problem and is not going to be solved overnight – roboticists have been

working on this for nearly half a century. In my view, it serves as one of the greatest challenges

we will ever face in robotics. I don’t see what the golden ticket will be for this in the near term,

but it is important that we continue to explore different avenues rather than conforming to a single

thread of research. Throughout this journey, I have been fortunate to be one of the first researchers

to work on compliant in-hand manipulation. To this end, I hope to keep reading more explorative

papers in manipulation in the near future until we find that breakthrough.

6.3 Suggestions for Continuing this Line of Work

Observing, controlling, and planning with mechanically compliant robots is a challenging endeavor.

I do not say this solely because I worked on in-hand manipulation, which is a fundamentally diffi-

cult problem, but because these sorts of robots generally introduce many mental obstacles for the

researcher. Normally in our academic endeavors, we are trained to want to know everything we

can about our system – every sensor reading, every computational timestamp, and every actuation

velocity. But with these systems, you need to get comfortable in dealing with the fact that much

about the system is unknown. To this end, try to exploit this concept for the gain of the task. Here

are some rules of thumb that helped me:
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1. Get comfortable not knowing everything happening with your robot. Observe and control

what you can. If something else needs controlled, add minimal complexity and try again.

2. Simulation continues to be poor at describing interactions with the real world. Compliance

allows us to deal with intricacies of the real world. Train and test with this in mind.

3. No robot will act ideally. The number of times I tried to reduce friction in actuation trans-

missions was too high to count. Deal with this through other means.

4. Emergent, parasitic, compliant (whatever word you fancy for the day) motion will be how

we solve manipulation. If this is mechanical-based or software-based is still up for discussion.

Try to think why you are using compliance, how it helps, and if there are better ways to

implement it. Each method has benefits. Try to figure out what may be yours.

Good luck in your endeavors. I hope that our paths will cross someday and that we will all

continue to push towards general purpose robot manipulation for the future.
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Appendix A

Notes on Visual-based Insertion

Selecting a Manipulation Frame

Selecting the best manipulation frame for object insertion, as eluded to in Sec. 5.2.4, is important as

the antipodal grasp that definesM, limits the amount of torque that can be applied by the contacts

onto the object. Let’s consider two objects that define different antipodal contact widths, d1o and

d2o, respectively. These distances fundamentally define the lever arm by which contact forces can

be applied by the manipulator, or in the case of this work a hand, to the object. Assuming that

friction coefficients and contact force applications are identical, the grasp with max(d1o, d
2
o) will have

a larger bound in the torques than can be imparted onto the object to aid in insertion.

In addition to the case of supplying a larger torque to the object, selecting the cross section of Γ

that nearly maximizes do is also advantageous, according to the defined condition of insertion (Sec.

5.2.4). Fundamentally, while keeping the tolerance between the hole and all candidate object cross

sections constant, as one increases do, βf will subsequently decrease. By selecting do such that it

is (near) maximized, this condition is attempting to control the most difficult axis of the object to

insert while relying on compliance to account for any out-of-plane reorientation of the other axis,

which has a larger βf . While the proposed approach for pickingM is largely heuristic, it suits well

for insertion with a dexterous hand that can apply much smaller forces than that of a manipulator.

More formally, in the case of selectingM∈ SE(3), we want to choose an insertion plane inside of

an arbitrary 3D object geometry, Γ, such that we maximize the projection of T back onto the vector

connecting the two antipodal contact points. Assuming a given Γ, we can compute T and thusM

by analyzing properties of the object’s face. More formally, consider that the outer geometry of a

peg’s face is sufficiently represented by a 2D point cloud of n points, i.e., F ∈ IRn×2. It is possible

to calculate the centroid of the point cloud, Fc, by taking its dimension-wise mean. Using Principal
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Figure A.1: The proposed system is robust to external disturbances imposed during task
execution. In this task sequence, the pose of the hole, arm, and object are all manually
perturbed and the system recovers such that the object successfully reaches its goal config-
uration. Refer to the supplementary video for the complete results.

Component Analysis (PCA), we can compute the two principal axes of F , forming P = [π1, π2]. We

solve for the outermost point, m, of the point cloud geometry by solving the optimization problem,

m = argmax
f∈F

π1 · (f − Fc) (A.1)

The location of m, which lies, or almost lies, along π1, appropriately maximizes the distance, do,

between two antipodal contacts on the 3D object geometry. We can then compute the transformation

T from m back to the object frame, X ∈ SE(3), and thus providing our manipulation frame

M∈ SE(3) that will be used for guiding object insertion.

System Recovery to Disturbances

For robots that act in unknown, and contact-rich environment, various forms of disturbances can

arise depending on the robot’s operating scenario. As aforementioned, these disturbances can be

self-induced, where for instance, a robot’s perception and control noise causes the manipulated

object to move differently than the internal model predicted, and thus the system must react.

Similarly, disturbances can occur that are not caused directly by the robot’s actions but by other

objects or robots in its environment, as in the case of highly cluttered scenarios. We simulate such

occurrences by deliberately disturbing the arm, object, and hole during an execution (Fig. A.1).

More specifically, during the task and in four separate occasions, we move the location of the hole

on the support surface, causing our system to reactively adapt to the new goal configuration via

the continuous feedback from the object tracker. During this sequence, we also push on the arm
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Figure A.2: The ablations make use of two manipulators with different levels of compliance
at the arm, hand, or environment level. (a) A Barrett WAM serves as a low-impedance,
compliant manipulator and has been tested with a compliant (left) and a rigid (right) hand;
while the (b) Kuka IIWA is an example of a rigid manipulator, which has been tested with
a rigid hand and a compliant (left) or rigid (right) hole.

and the object, perturbing the state of the hand-object configuration, as to require the system to

overcome such disturbances for successful insertion. These task evaluations are included in this

paper’s supplementary video.

System Observations and Limitations

This subsection is part of a discussion on system limitations (Sec. 5.2.6), and what can be improved

about the system for future advancements in robot assembly tasks.

Visual Perception: While the RGBD-based 6D pose tracker is robust to a variety of objects

with challenging properties such as textureless, reflective, geometrical featureless, or thin/small

shapes, it struggles to track severely shiny, glossy, or transparent objects, due to the degenerated

depth sensing of the camera. In future work, we hope to explore extending this framework to these

other types of scenarios with the techniques of depth enhancement and completion [159]. In addition,

the current framework requires an object CAD model beforehand to perform 6D pose tracking and

for reasoning about the task of peg-in-hole insertion. In future work, reconstructing the model of

novel objects on-the-fly [136] while with sufficient precision to perform high-tolerance tight insertion

tasks is of interest.

Inaccuracy of the Low-Impedance Manipulator for Grasp Acquisition: While the

manipulator leveraged in this work was largely beneficial for task completion, it also introduced
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difficulties in acquiring an initial grasp. Soft, compliant, and underactuated hands are well suited

for grasping, but in cases of robot assembly where future within-hand manipulation is necessary

(especially with 40+ finger actions as we saw with our tasks), acquiring a well-intended and stable

grasp at the fingertips is necessary from the start. Such grasps would be especially possible with an

accurate manipulator that is able to appropriately position the hand over the object for grasping.

Though, for cases in this work where we saw task failure, it was largely due to starting with a

poor initial fingertip grasp, which was directly attributed to the end effector’s deviation from its

commanded initial pose.
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