
Abstract— In this work, we investigate methods to detect 
four phenomena (modes) that occur during prehensile 
fingertip-based within-hand manipulation without the use of 
tactile sensors. By using actuator states and visual data, we aim 
to recognize different modes of operation such as interpreting if 
the hand is about to drop the object, if the object will begin to 
slide on the fingers, or if the system is at or near a singularity. 
For this purpose, we utilize supervised learning techniques, 
which allow us to detect the modes without the use of a 
mechanical model of the system. We analyze the individual 
roles of specific features available through both the actuator 
and visual data, and identify the ones that have the most 
significance for detecting the operation modes. Our results 
show classification performance of 96% (using either Extra 
Trees, Gradient Boosting, or SVM) when using combined 
actuator and visual features. Interestingly, we were able to 
achieve a 94% classification rate using only actuator 
information, and 93% using only visual information. Overall, 
the classifiers identified actuator positions, actuator loads, and 
commanded velocities as the most important features for 
detecting a mode. These results have implications for enabling 
the control of within-hand manipulation movements utilizing a 
minimal amount of sensory information without a model of the 
hand/object system.   

I. INTRODUCTION 

The ability to manipulate an object within the hand 
introduces a great degree of dexterity to a robot as it enables 
repositioning or reorienting of the object without re-grasping 
or large whole-arm or whole-body motions [1], [2]. 
Kinematics and dynamics models of in-hand manipulation 
have been derived in the literature for various contact models 
and hand topologies [3]–[5]. Utilizing these models for 
executing an in-hand manipulation task, however, is typically 
very challenging, as they generally require an accurate 
knowledge of the object and hand models. In addition, the 
contact locations on the object and the fingers need to be 
known along with the friction coefficients and force 
magnitudes at these locations. Unfortunately, this information 
cannot be reasonably known for many robotics scenarios, as 
precise information about object properties are not often 
known in advance and sensory information, if available, is 
generally noisy. Moreover, for compliant/soft hands, deriving 
accurate models for the mechanical response of the 
hand/object system may not be feasible at all as very few 
options exist for estimating complex spatial deformations of 
soft structures. 

In our earlier work [6], we have demonstrated that 
accurate and efficient within-hand manipulation can be 
conducted by only using very rough gripper models and 
without the knowledge of object models, contact locations or 
applied forces if two key components are combined together:
system compliance and vision feedback. The role of system 
compliance is to ensure contact with the object during 

manipulation. This can either be achieved mechanically by 
adaptive/underactuated/soft robotic hands [7]–[9] or by the 
use of an impedance control framework [10]. With vision 
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Figure 1. We investigate the ways of detecting in-hand manipulation 
modes using visual features, actuator data and user/controller 

commands (yellow arrow signifies commanded velocity). The classifier 
predicts whether the system will: (a) get stuck, (b) drop the object, (c) 
slide the object within hand or (d) do normal operation. Classification 

results generalize for objects with different shapes and sizes. 
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feedback, we are able to close the loop in the task space, 
which allows us to maintain convergence even with very 
rough gripper models since visual servoing algorithms are 
robust to robot calibration errors. In addition, the 
performance of the system can be boosted by utilizing 
advanced control techniques: we have used the model 
predictive control framework for achieving close-to-optimal 
object trajectories in the image space, which results in faster 
convergence and less travel distances while moving between 
set points [11]. 

Such a combination of system compliance and vision 
feedback allows us to avoid sophisticated motion planning 
strategies that relies on accurate system models. On the other 
hand, the lack of accurate models prevents us from 
calculating workspace constraints and singularities of the 
system. Therefore, it becomes challenging to determine 
when the in-hand manipulation system would move out of 
the normal operable workspace and drop the object or get 
stuck in a singularity. In addition, we lack tools to detect and 
control manipulation phenomena such as sliding, which 
might be desirable or undesirable depending on the 
manipulation goal. Detecting such modes is not only crucial 
for achieving safe manipulation, but also instrumental for 
learning control policies since they will help reducing the 
task failures. The study in [12] shows that “people can learn 
to predict the consequences of their actions before they can 
learn to control their actions.” This allows them to avoid task 
failures, while learning more complex manipulation policies. 

In this work, we investigate ways of estimating four 
manipulation modes (or states) of the hand/object system 
during prehensile fingertip-based within-hand manipulation 
(summarized in Fig. 1): “drop” (where the object is on the 
verge of being dropped), “stuck” (where a singularity has 
been reached and motion cannot freely happen in all 
directions), “sliding” (where the object is on the verge of 
sliding), and “normal” (where the object can be freely moved 
in all directions). We seek answers to the following 
questions: 

1) How accurately can these manipulation modes be 
estimated using actuator information and visual data? 
Here it is important to note that we utilize an 
underactuated hand in which the actuator positions and 
loads do not supply the full hand state. 

2) Which features/information have higher importance 
for estimating the manipulation modes? 

3) Can the results be generalized for objects with 
different sizes and geometries? 

4) How can we utilize the mode detection scheme in an 
online in-hand manipulation control loop? 

For answering these questions, we adopted supervised 
learning techniques and used a Model T-42 underactuated 
hand [7] as our test bed (Fig. 2). We collect data for each of 
the manipulation modes and train our system with a range of 
classifiers. With a feature significance analysis, we examine 
key features for detecting the manipulation modes, including 
scenarios where only actuator or only visual information is 
available. Finally, the classifier is used to conduct safe in-

hand manipulation, which avoids the regions with high risk 
of singularity or object drop.  

This paper is organized as follows. The next section 
presents a review of the related work. In Section III, our 
method to estimate manipulation modes is explained in 
detail. In Section IV, classification results are presented 
together with a discussion on feature importance. Section V 
concludes the paper. 

II. RELATED WORK 

Robotic manipulation is challenging to model due to the 
complexity of the interaction between the robot, the objects 
and the environment. Physical parameters of these 
interactions (e.g. object shape and friction coefficients) are 
also generally not available in unstructured environments. In 
order to avoid the use of explicit models, learning algorithms 
are utilized to generate manipulation policies for various 
tasks. In robotic grasping, these algorithms are used to 
obtain a mapping between tactile readings and the grasp 
stability [13]–[15]. In [16], reinforcement learning is used 
for learning how to manipulate articulated objects. Similarly, 
a probabilistic framework is proposed in [17] for learning 
kinematic models of the articulated objects. 

During manipulation, gripper compliance brings a great 
degree of robustness for establishing and maintaining the 
contact with the object and the environment. Even though, 
compliance introduces further complexity to the contact 
modeling, it provides a safe operable workspace for the 
learning algorithms to explore. For instance, in [18], 
reinforcement learning methods are utilized for learning 
compliant manipulation strategies for opening a door and 
picking up a pen. In this way, the advantage of compliance is 
exploited without the need for explicit task and interaction 
models. 

The learning by demonstration framework provides 
another strategy for obtaining policies for manipulation. In 
[19], models of various manipulation tasks are learnt by 
human demonstrations and fusing various visual and tactile 
data. In this work, similar to ours, they also use the acquired 
data to differentiate patterns of different stages of 
manipulation: they distinguish between the sensor patterns 
that corresponds to simple object displacements (without 
manipulation) and within-hand object positioning. 

Specifically for within-hand manipulation, object 
positioning skills are learnt for a compliant hand by utilizing 
tactile sensing via reinforcement learning [20]. In [21], deep 
learning is used to learn in-hand affordances directly from 
raw images. Learning by demonstration is also utilized for 
learning fine in-hand manipulation skills in [22], [23].  

In this work, we do not learn control policies as the 
above-mentioned work, but employ actuator and visual data 
for detecting manipulation modes; we believe that such a 
high-level supervision coupled with robust control 
techniques in image space (e.g. [11]) can result in accurate, 
generalizable and stable manipulation strategies. 
Nevertheless, the strategy proposed in this paper is very 
suitable to be combined with the above-mentioned 
approaches, which do not use an explicit system or task 
model. 
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In the literature, several approaches are reported for 
detecting stick-slip conditions during manipulation [24]–
[27]. In all these works, tactile data is used for training the 
classifiers. Nonetheless, integrating tactile sensors 
complicates the mechanical and electrical design, and could 
result in a bulky system. This is especially undesired for a 
hand like Model T-42, in which the goal is to achieve high 
functionality with simple and inexpensive design. In our 
work, we do not use tactile sensing for mode estimation, but 
investigate the role of actuator and visual data for detecting 
the manipulation modes. Moreover, we train a single 
classifier for detecting the conditions for dropping the 
object, getting into singularities and sliding the object within 
hand.  

III. DATA COLLECTION FOR MODE ESTIMATION  

We aim to estimate four modes of in-hand manipulation, 
which are explained below: 

Drop: This mode signifies that the object will be dropped if 
the system moves towards the commanded direction. 

Stuck: The system will get into a singularity and won’t be 
able to move further, if the commanded direction is 
followed. 

Slide: The object will slide within hand if the commanded 
direction is followed. 

Normal: The system is neither in ‘stuck’, ‘drop’ or ‘slide’ 
mode. 

Detecting these modes gives us the advantage of 
avoiding failures or undesired object motions during in-hand 
manipulation; they are useful to manipulate the target object 
along a desired trajectory without dropping, slipping, or 
getting into singularities. In some cases, the user may want 
to trigger these modes for various purposes; sliding the 
object within-hand may be advantageous to shift the contact 
points on the object. The “stuck” mode can be useful for 
squeezing the object with compliant grippers since 
reconfiguration is jammed in singularities. Detecting the 
“drop” mode may be used to signal the robot that the object 
will be released soon. 

We utilize supervised learning methods for training a 
classifier using actuator data and visual features, without 
using object or gripper models. This model-free strategy also 
allows to integrate the detection method in vision-based 
manipulation frameworks that do not rely on accurate 
system models (e.g.  [6], [11]). 

We trained our classifiers using Model T-42 
underactuated hand (Fig. 2; [7]). This hand has two identical 
opposing fingers each of which has two joints and one 
Dynamixel MX type actuator. We collected training data by 
manipulating six different objects: three cylinders and three 
rectangular prisms with various sizes, as can be seen in Fig. 
3. Our setup is presented in Fig. 4. We firmly mounted our 
Model T-42 hand and placed a camera to observe the system 
directly from the top.  

In order to generate the training data we recorded 
actuator and visual data streams synchronously with the 
following procedure. The object is supported with a stand 
for the initial grasp. After the grasp, the stand is removed so 

that there is no support plane during in-hand manipulation. 
The object is moved in the planar workspace by velocity 
references supplied manually via a keyboard. We have 9 
inputs: north, north-east, east, south-east, south, south-west, 
west, north-west and a stop command. These Cartesian 
velocity commands are projected into the actuator space via 
a Jacobian matrix obtained by utilizing simple manipulation 
primitives as explained in [6]. Dynamixels’ built in 
controllers are used to realize the actuator commands. Using 
the manual Cartesian space commands, we steer the system 
for triggering the four above-mentioned modes and recorded 
data streams in which the object drops, gets stuck, slides and 
operates without these modes (“normal” mode). 

 
 

Figure 3. Objects used in the experiments. Cylinders with 2, 3 and 4 
cm diameters, and rectangular prisms with dimensions 2x4, 3x5 and 

4x6 cm. The objects’ weights vary between 12 g and 75 g.

 
(a) 

 
(b) 

Figure 2. (a) The Model T-42 gripper. (b) a detailed schema showing 
actuators and spring mechanisms. 
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The features used for the training are collected using the 
recorded data streams as follows: we played back each 
stream to detect the instances when the four modes occur. 
For each instance, we recorded positions, velocities, loads 
and load changes of the actuators as actuator data. From the 
vision sensor we recorded the positions, velocities and 
orientations of each link and the target object using fiducial 
markers. The fiducial measurements were taken with respect 
to a fixed marker positioned at the base of the gripper, so 
that the measurements are robust to camera repositioning. 
The user commands are also added to the feature vector 
which are Cartesian and actuator velocity references. The list 
of all the features can be seen in Table I. Here, link 1 and 3 
are the distal links of the left and right fingers respectively, 
and link 2 and 4 are the proximal links. 

For the ‘normal’, ‘drop’ and ‘stuck’ modes, we collected 
50 data points for each object with the procedure explained 
above. For the ‘slide’ mode, data is collected only for the 
rectangular objects, as sliding is not observed while 
manipulating the cylindrical objects. In total, we collected 
1050 data points (50 [data_points] x 3 [cylindrical_objects] 
x 3 [modes] + 50 [data_points] x 3 [rectangular objects] x 4 
[modes]). 

IV. CLASSIFICATION RESULTS 

A. General Classification Performance 
First, we aim for the best classification result that we can 

obtain using all the available data in Table I. We utilized 
TPOT [28] and Scikit-learn [29] to investigate the 
performance of six supervised learning methods: extra trees 
[30], gradient boosting [31], neural nets [32], random forests 
[33], ridge classifier and support vector machine (SVM) 
[34]. For each algorithm, a single classifier was trained using 
75% of the collected data, using stratified sampling by label. 
For testing the classification performance, we ran the 
classifiers on a test set of the remaining 25% of the data. The 

classification scores are given in Table II. It can be seen that 
extra trees, gradient boosting and SVM performed very close 
to each other with around 96% classification rate. The 
random forests classifier gave slightly worse results
comparing to the prior algorithms. It can be said that these 
classifiers can successfully generalize the modes for objects 
with various shapes and sizes in the experiment set. Ridge 
and neural nets considerably underperformed for our data;
the former due to its limitations as a linear model, and the 
latter due to the limited size of the training data, leading to 
overfitting and poor generalization. 

The confusion matrix for the best-performed classifier, 
extra trees, is given in Figure 5. This matrix shows that the 
classifier mostly has difficulty differentiating between 
sliding and normal cases. The ‘normal’ mode is 
misclassified as ‘slide’ for 3% of the cases, and ‘slide’ mode 
is misclassified as normal for 5% of the cases. The ‘normal’ 
mode gets the most false positives as it neighbors all of the 
other states (this will be demonstrated in the Fig. 7 and 8
shortly). One reason for higher misclassification for sliding 
is that the motions that cause sliding for rectangular objects 
with flat surfaces do not cause sliding with cylindrical 
objects. At this point, using tactile sensing and/or knowledge 
about the contact surface curvature could be useful for 
improving the classification performance further. Since we 
do not want to complicate the design of our gripper, we will 
aim to visually identify the local curvature and utilize it for 

 
 

Figure 4. Experimental setup. 

TABLE II.  CLASSIFICATION RESULTS USING ALL THE FEATURES 
WITH SIX DIFFERENT LEARNING METHODS  

Classifier Score 
Extra trees 96.1% 
Gradient boosting 95.9% 
SVM 95.8% 
Random forests 94.9%
Ridge 85.2% 
Neural nets 52.4% 

TABLE I.  FEATURES RECORDED TO BE USED FOR TRAINING THE 
CLASSIFIERS. YELLOW CELLS: ACTUATOR FEATURES; BLUE CELLS: 

VISUAL FEATURES; GREEN CELLS: USER COMMANDS 

 
 Features   Features 
1 Act. 1 position  20 Link 4 orien. 
2 Act. 2 position  21 Link 1 vel. x 
3 Act. 1 velocity  22 Link 1 vel. y 
4 Act. 2 velocity  23 Link 2 vel. x 
5 Act. 1 load  24 Link 2 vel. y 
6 Act. 2 load  25 Link 3 vel. x 
7 Act. 1 load ch.  26 Link 3 vel. y 
8 Act. 1 load ch.  27 Link 4 vel. x 
9 Link 1 pos x   28 Link 4 vel. y 
10 Link 1 pos y  29 Object pos. x 
11 Link 2 pos x  30 Object pos. y 
12 Link 2 pos y  31 Object orien. 
13 Link 3 pos x  32 Object orien. ch. 
14 Link 3 pos y  33 Object vel. x 
15 Link 4 pos x  34 Object vel. y 
16 Link 4 pos y  35 Cartesian vel. ref. x 
17 Link 1 orien.  36 Cartesian vel. ref. y 
18 Link 2 orien.  37 Act. 1 vel. ref. 
19 Link 3 orien.  38 Act. 2 vel. ref. 
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mode recognition in our future work. 

B. Performance of the Sub-components 
Next, we investigated and compared the classification 

performance for three main scenarios. In the first scenario 
both actuator data and visual information were assumed to 
be available. In the second scenario, we assumed that the 
visual features cannot be easily detected (due to occlusions 
or image processing challenges) so that only actuator data 
were needed to be used together with actuator space velocity 
references for detecting the modes (features 1-8 and 37-38). 
In the third scenario, the classifier did not have access to 
actuator information, but externally observed the system 
from the camera, so that only the visual features were 
available (features 9-36).  

For evaluating these cases, the extra trees classifier was 
used. The classification results for the three scenarios are 
given in Table III and confusion matrices are presented in 
Fig. 6.  We see that the classification performance slightly 
drops using only actuator data or visual sensing. For both of 
the cases, it becomes harder to differentiate between the 
“slide” mode and the “normal” mode. For the “drop” and 
“stuck” modes, classification rates are still quite high for all 
of the scenarios. 

C. Generalization Performance for Different Sizes 
Next, we analyzed the ability of the classifier to 

generalize the mode classification for specific object sizes 
not included during the training phase. In doing so, we 
trained the system with only small and medium objects (both 
cylindrical and rectangular) and tested the classifier on the 
large objects. The 95% confidence interval of the accuracy  
can be seen in Table IV after 100 runs. Comparing to the 
results in Table III, we observe only a marginal drop in the 

classification performance; the classifier can extrapolate the 
results to objects outside the training dataset in this case. 

D. Feature Importance 
Following that, we ran a feature importance analysis with 

the extra trees classifier for vision only and actuator data
only scenarios by averaging the importance values for 100 
test runs. The top ten important features for these cases are 
presented in Table V. Here, we see that user commands get 
relatively high importance in both of the cases. This is
expected, as the direction that the object is heading towards 
greatly affects which mode the object will fall into. This can 
also be seen from Fig. 7, which is obtained by projecting 
classification results into Cartesian space using object 

 
(a) 
 

 
(b) 

 
Figure 6. Confusion matrices for (a) using only actuator features and 

user commands, (b) using only visual data and user commands. 

TABLE IV.  CLASSIFICATION RESULTS WITH EXTRA TREES 
TRAINED WITH SMALL AND MEDIUM SIZE OBJECTS AND TESTED ON 

THE LARGE SIZE OBJECTS 

Training set Score % 
All features 94.4 ± 0.016 
Only actuator features + act. commands 92.9 ± 0.014 
Only visual features + Cart. commands 92.5 ± 0.022 

 
 

Figure 5. Confusion matrix for Extra Trees classifier using all 
available features. 

TABLE III.  CLASSIFICATION RESULTS WITH EXTRA TREES 
CLASSIFIER FOR THREE DIFFERENT SCENARIOS 

Training set Score % 
All Data 96.1 ± 0.014 
Only actuator features + act. commands 93.9 ± 0.022 
Only visual features + Cart. commands 93.0 ± 0.030 
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positions. The arrows indicate the Cartesian velocity 
reference given to the system. Here, for similar object 
positions, the classification results differ for the given 
velocity commands. For the case that only actuator sensors 
are used, actuator loads and positions have the highest 
importance, whereas actuator velocities has the least. For the 
vision only case, the importance is distributed similarly to 
positions and velocities of all the links. Object y-position 
also has a high importance as for many of the manipulation 
modes, the position of the object in the workspace is a strong 
indicator. 

E. Using the Classifiers in the Control Loop 
We analyzed the performance of the extra trees classifier 

by integrating it to an online control scheme (using all the 

features). For this implementation, we used ROS and 
utilized the “ml_classifiers” package for interfacing with the 
classifier. For the implementation of the classifier, we used 
OpenCV’s “Random Trees” functions, and for detecting the 
fiducial markers we used OpenCV’s ArUco Markers library. 
We refer the reader to our video attachment for the 
demonstration that the classifier identifies the modes online 
and stops the controller to avoid dropping the object. 

In addition, considering that the actuator positions are 
highly important for detecting the manipulation modes, we 
believe that the results of the classification algorithms can be 
utilized for in-hand manipulation planning in the actuator 
space. By using the SVM classifier and using only actuator 
positions as features, we obtain 89% classification score, and 
partitioned the actuator space for different modes as 
presented in Fig. 8. As our future work, we are planning to 
utilize partitioned maps for acquiring reward functions that 
can be used for manipulation planning in actuator space. 

F. Summary of the Results 
• If actuator and visual features are used together, 

manipulation modes can be detected with 96.1% 
success rate with a single classifier for objects of 
various shapes and sizes. 

• Using only actuator features or only visual features 
slightly drops the classification performance comparing 
to using both. 

• With a feature importance analysis, we have concluded 
that actuator positions, actuator loads, and user 
commands are the key features for detecting the 
manipulation modes; up to 89% classification 
performance can be achieved by utilizing only actuator 
positions. 

• We also obtain higher than 92% classification rate for 
objects outside the training set. 

• Finally, the classifier is used to conduct online in-hand 
manipulation. 

 
Figure 8. Regions for the four modes in actuator space obtained by 

SVM classifier.

TABLE V.  FEATURE IMPORTANCE VALUES FOR VISION-ONLY AND 
ACTUATOR DATA-ONLY SCENARIOS. 

Vision only  Actuator data only 
Feature Imp.  Feature Imp. 
Car. vel. ref. y 0.15  Act. 2 load 0.18 
Car. vel. ref x 0.09  Act. 1 load 0.17 
Link 1 pos. y 0.08  Act. 2 pos. 0.15 
Obj. pos. y 0.08 Act. 1 pos. 0.14
Link 3 pos. y 0.06  Car. vel. ref. y 0.11 
Link 4 pos. x 0.04  Car. vel. ref. x 0.06 
Link 2 vel. x 0.03  Act 1 vel. ref. 0.06 
Obj. pos. x 0.03  Act. 2 vel. ref. 0.05 
Link 1 vel. y 0.03  Act. 1 vel. 0.04 
Link 3 pos. x 0.03  Act. 2 vel. 0.04 

 
 

Figure 7. Classification results projected to the Cartesian space using 
object positions. The arrows indicate the velocity commands. Bold 

black arrows are the misclassified data points. 
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V. CONCLUSION 
In this work, we analyzed the performance of supervised 

learning algorithms for estimating modes of in-hand 
manipulation. Our strategy does not require a task model for 
identifying the “drop”, “stuck”, “slide” and “normal” modes. 
Naturally, the specific classifiers obtained in this paper are 
only valid for our target system. Nevertheless, we believe 
that the analysis presented in this paper gives very valuable 
insights for in-hand manipulation with grippers of similar 
topology (e.g. the OpenHand grippers [7]), and provides a 
methodology for investigating manipulation modes for other 
types of grippers. 

As a future work, we will concentrate our efforts for 
utilizing the classifiers in the manipulation planning schemes 
and vision-based control strategies as well as investigating 
features and classifiers that will apply more generally to 
other hands, objects, and tasks.  
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