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Abstract— Current robotic terrain mapping techniques re-
quire expensive sensor suites to construct an environmental
representation. In this work, we present a cube-shaped robot
that can roll through unstructured terrain and construct a
detailed topographic map of the surface that it traverses in
real time with low computational and monetary expense. Our
approach devolves many of the complexities of locomotion
and mapping to passive mechanical features. Namely, rolling
movement is achieved by sequentially inflating latex bladders
that are located on four sides of the robot to destabilize
and tip it. Sensing is achieved via arrays of fine plastic pins
that passively conform to the geometry of underlying terrain,
retracting into the cube. We developed a topography by shade
algorithm to process images of the displaced pins to reconstruct
terrain contours and elevation. We experimentally validated
the efficacy of the proposed robot through object mapping and
terrain locomotion tasks.

I. INTRODUCTION

The demand for increasingly autonomous robotic systems
has motivated extensive research on robot navigation and en-
vironmental mapping. One common approach, simultaneous
localization and mapping (SLAM), reconstructs an environ-
ment in 3D and estimates robot pose in that environment by
acquiring sensory data from on-board Lidar, cameras, GPS,
or other sound and signal-based range finders [1].

Although SLAM and its variants have been shown to
depict obstacles and topography with a sufficient degree of
accuracy for most navigation purposes, their construction of
environmental maps comes at great computational expense
and ignores finer details, limiting their applications in cost-
conscious or small-scale projects [2]. For instance, a 3D
reconstruction of the environment is typically derived from
triangular meshes which, beyond being computationally ex-
pensive to construct and store [3], [4], have hard constraints
on the resolution of features they can map. Additionally,
the suite of sensors required for accurate topographic recon-
struction ramps up the monetary expense, complexity, and
fragility of a system [5].

A compelling alternative to optical sensor- and range
sensor-driven mapping techniques, like SLAM, is to leverage
tactile-based sensors to map an environment through direct
physical interaction. Features and textures, indiscernible to
range-based systems, could be tracked with tactile sensing,
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Fig. 1. A cuboid robot that can move across and map the topography of
unstructured terrain. Each face of the rolling surface is equipped with pin
arrays that provide sensing and inflatable bladders to facilitate locomotion.
LED strips are strung throughout the robot’s interior to illuminate deformed
pins for the topography by shade approach.

all with lower computational and monetary expense. Exam-
ples of established tactile sensing schemes include electro-
active tactile sensors, which have been used in robotic hands
to classify objects of diverse shapes and sizes [6], and
tactile sensors based on deforming fiducials on a compliant
membrane [7], [8] or incident light changes [9], [10]. Both
techniques have been shown to elicit accurate surface and
texture classifications under a variety of object conditions.

Herein, we showcase a cuboid robot that can roll through
varied terrain and construct accurate contour and elevation
maps in real-time using tactile-based sensing (Figure 2). The
cuboid robot moves by sequentially inflating two bladders
on each of its four faces to destabilize itself and roll to a
subsequent face. To sense and map the terrain over which
it rolls, the robot utilizes a passive tactile-based sensing
mechanism that comprises of an array of plastic pins which
deform to the shape of objects underneath. On the inside
of the cube, lights are flashed in a coordinate fashion on
different sides of the pins while pictures are taken with
an embedded wide-angle camera. Via our topography by
shade algorithm, inspired by a classical computer vision
techniques, shape from shading and photometric stereo [11],
[12], the topography of underlying terrain is re-constructed
from these images, agnostic to object texture, transparency,
or reflectance. Our topography by shade algorithm is dis-
cussed in detail in Section IIC.
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The outline of this paper is as follows: Section II describes
the hardware and software systems of the robot, Section III
outlines three experiments performed on the cuboid robot to
quantify its locomotion and mapping abilities, and Section
IV concludes the paper with a discussion of future work.

II. SYSTEMS OF THE CUBOID ROBOT

A. Mechanical Hardware

The body of the cuboid robot (Figure 3A) is made pri-
marily from laser cut acrylic sheets and 3D-printed brackets.
Four of the six faces of the cuboid contain an array of
plastic pins that are free to slide between two parallel
acrylic plates, serving as the passive tactile-based sensing
elements. The two remaining faces are made from opaque
acrylic to block out ambient light. Blocking the light renders
optimal conditions for the topography by shade algorithm, as
discussed in Section III. The robot is connected to an external
pneumatic line and a control PC.

Figure 3B shows an exploded view of one sensory face of
the cuboid robot. The face constitutes three distinct levels.
The outermost level (1) contains exposed sensory pins. The
pins are routed through small holes (1.35 mm diameter) so
that they are free to translate vertically, but have minimal
side-to-side movement. In addition, there are two bores
where press-fit 3D printed inserts hold the latex pneumatic
bladders. These inserts are angled to direct the inflation
trajectory of the bladders. The second level (2) has pin
routing holes that provide a secondary constraint preventing
lateral movement. Additionally, four holes contain press-fit
3.65 mm wooden dowels that route an addressable, flexible
LED strip around the spacers between the second and third
levels. The third level (3) is made from a clear acrylic sheet,
which prevents the pins from falling while providing a view
of the pins to the camera.

The three levels of the face are stacked and aligned using
four plastic shoulder screws and 3D printed spacers. The
spacers between levels one and two also serve as brackets
that connect the four pin array faces together and are rounded
to aid with rolling. Additional acrylic stability supports lie
between the spacer and level one to prevent the cuboid robot
from rolling onto its non-sensing faces, as seen in Figure 1.

The camera is fixed to a 6.35 mm wooden dowel that
runs between the two pin-less faces of the robot. This design
allows the camera to passively rotate about the central axis
of the robot during locomotion, relying on gravity to reorient
the lens toward the sensory face contacting the ground. The
entire robot weights 911 g and is 20.4 cm about each of its
edges. The total cost of the robot at time of construction was
approximately $100.

B. Electronic Infrastructure

The cuboid robot’s interior contains individually address-
able LED strips (NooElec, WS2801) to illuminate the dis-
placed pins and a wide-angle camera (ELP, megapixel Super
Mini) to capture images. The remaining electronic infrastruc-
ture is off-board for the proof-of-concept prototype described
in this paper. An array of 8 addressable miniature pressure

Fig. 2. The cuboid robot rolls across obstacles in the midst of performing
topographical mapping. The robot is able to capture a high degree of object
detail and traverse unstructured terrain.

regulators with built-in bang-bang control are used to control
the inflation of the pneumatic bladders [13].

Both the LEDs and the pressure regulators interface di-
rectly to the Arduino, which is in turn controlled by a PC
via serial communications. The camera is directly connected
to the PC via a USB cable.

C. Software Architecture

The software architecture (Figure 4) contains four primary
ROS nodes, each with its own set of sub-modules that exe-
cute robot-specific functionality. Low-level code running on
the Arduino for the I2C bus and serial LED communication
is accessed by the master ROS controller. Commands from
the master control node are sent to the Arduino via serial,
commanding the pressure regulators and the LEDs. The
camera node publishes a 640x480px image at 30Hz, which
was found to be an optimal balance between precision and
frame rate. In the subsequent sections, we discuss the main
two nodes, control and vision processing, in detail.

Algorithm 1 Mapping Topography by Shade in Cuboid
Output: dface . Map for all Faces

1: for face ∈ faces do
2: inflateSequence(face)
3: for edge ∈ edges do
4: illuminateEdge(edge)
5: im[edge]← cuboidCamera() . HSV
6: dface[face]← blurInterpolation(im)

7: return dface

1) Control node: The master controller coordinates se-
quential tasks within the ROS communication framework by
keeping a global clock and waiting for specific events to
occur. Algorithm 1 presents the outline of this sequence.
After the cuboid robot rolls onto a face via the inflate-
Sequence(face) method, which commands the addressable
pressure regulators to inflate and deflate systematically for
a desired face, the controller initiates a hard-coded illu-
mination sequence for internal LED sections in illumina-
teEdge(edge). During the illumination process, the master
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Fig. 3. Schematic of the cuboid robot. (a) Open side view, including the camera and camera mounting system (center of the robot on a dowel rod) (b)
Exploded view of one face. Labels (1), (2), and (3) denote the outer, middle, and inner laser cut acrylic levels, respectively.

controller captures hue saturation value (HSV) images from
cuboidCamera() when each of the four edges are illumi-
nated individually. The four images are then sent through
the blurInterpolation(im) method for further processing, as
described in a subsequent section. This process continues
until a predefined halt is triggered in its operation, presenting
the final topographic map, dface, for the user.

Algorithm 2 blurInterpolation() Method
Input: im . Four Images in HSV
Output: mface . Topographical Map of Face

1: imAvg ← averageImgs(im) . Avg Data
2: datBlur ← blurNeighbors(imgAvg)
3: datF ilt← rmvPeakExtr(dataBlur)
4: valleys← findV alleys(datF ilt)
5: peaks← findPeaks(datF ilt)
6: mface ← interpolatePeaks(peaks, valleys)
7: return mface

2) Vision processor node and ”topography by shade”
algorithm: The vision processing node receives and pro-
cesses HSV images provided by the camera node. It also
implements the topography by shade algorithm, which recon-
structs the terrain under the displaced pins. The algorithm is
inspired by the early computer vision technique “Shape from
Shading”, which initially used the 2D intensity map of an
image to reconstruct its 3D geometry [11]. Several variations
and extensions on the original technique have been proposed,
inspiring our topography by shade algorithm [14].

Our topography by shade algorithm draws inspiration from
yet another early computer vision technique from the late
1980s, photometric stereo, which was used to determine
an object’s surface orientation through incident illumination
of the object over successive images, holding the viewing
angle constant [12]. Although current, more sophisticated
photometric techniques exist for entire 3D surface recon-
struction, such as accounting for arbitrarily positioned lights
and multiple camera locations [15], our adaptation leverages
simplifying assumptions to reduce computation time.

Like shape from shading, we assume that the reflected
light intensity of some terrain manifested in the pins is a
function of its proximity to a viewing camera and the angle
of the light source on the object. We do not consider the
material reflectivity function and hold the position of the light
source relative to the deformation of interest constant. As in
classical photometric stereo, we assume the image projection
to the camera is orthographic (due to mechanical constraints
in our system).

To illuminate the displaced pins, we use four equal-
intensity light sources symmetrically located around the
sensor area. This is accomplished by individually addressing
sections of the continuous LED strands around the perimeter
of the pins on each of the cuboid faces. We capture images of
the displaced pins in each lighting condition, convert those
images to HSV format, and average them. From the average
image, we are able to easily extract a relative elevation profile
because elevated areas are more illuminated in comparison
to lower areas.

The algorithm for transforming face images to a topo-
graphical map is summarized in Algorithm 2. First, we
average the images into one composite via averageImgs(im)
and use a Gaussian blurring kernel to reduce high frequency
noise in the image via blurNeighbors(imgAvg). Then, we
filter out lone extrema values in our data through rmv-
PeakExtr(datBlur) and find general valleys and peaks in our
data through the findValleys(datFilt) and findPeaks(datFilt)
methods, respectively. Finally, we interpolate between these
peaks and valleys, partitioning object surface from baseline
in the interpolatePeaks(peaks,valleys) method to render our
final map.

III. EXPERIMENTS AND RESULTS

We performed a number of tests on the cuboid robot to
validate its efficacy in moving across and mapping unstruc-
tured terrain:

1) A characterization of the cube’s actuator volume to
tip angle relationship and determination of maximum
environmental slope for locomotion.
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Fig. 4. The cuboid robot’s software architecture comprises a collection of
ROS nodes which interface via serial to an Arduino Mega microcontroller,
which executes lower-level controls. The PC-based control node receives
and processes images of the topographical data. Pre-specified commands are
sent to the Arduino to activate rolling capabilities and lighting sequences.

2) The energetic cost of transport for the robot up differ-
ent grades.

3) The robot’s capacity to accurately distinguish topogra-
phy in two lighting conditions and to discern heights
of different objects.

4) Assessment of the robot’s efficacy in simultaneously
rolling and mapping topography.

A. Analysis of cuboid locomotion capabilities

To test the robot’s capability to navigate across varying
terrain, we characterized the minimum volume input to the
pneumatic bladders, V , required for it to move up an angular
grade, α, spanning from α = 0− 9◦. The analysis was con-
ducted in a quasi-static manner, namely, the bladders were
slowly inflated with precision syringes to not impart signifi-
cant angular momentum on the cube. In addition to tracking
the volume of air input to the bladders, we monitored the
pressure of the system using a pressure sensor in parallel to
pneumatic source (Honeywell, ASDXRRX030PDAA5).

Figure 5 depicts the minimum total input volume of the
two inflatable bladders that statically destabilized the cuboid
about its center of mass, allowing it to roll. Expectantly, for
a higher grade angle, a greater volume had to be input to the
bladders for the cube to tip.

As illustrated in the schematic at the top of the Figure 5
and as evidenced in the supplementary video, the second
inflatable bladder (closest to the contact of rotation) did
not need to inflate as much as the first bladder due to its
proximity to the pivot point. In fact, the volume of the second
bladder never reached above 80 mL, including that of our
highest grade, 9◦.

We attribute the variance in minimum input volume be-
tween sides to subtly different alignment angles of the
bladders with respect to the cuboid chassis. A possible
remedy would be to ensure the bladder guides (Figure 3B)
are all press-fit into the hole in exactly the same orientation.
An additional factor that contributed to variance was likely

viscoelastic effects present in each latex bladder. Since each
bladder was subjected to different pressures, external forces
from terrain, and was actuated a number of times through the
course of our tests, they each experienced different amounts
of hysteresis. Thus, their inflation trajectories became less
productive in generating motion (i.e. bent outward instead
of directly downward) for the same volume input.

In practice, a priori knowledge of maximum grade angle
across a swath of terrain would indicate the baseline required
bladder inflation volume to traverse that terrain. One could
leverage the angular momentum of the cube system by
delivering short bursts of air to the bladders and tip with
far less volume input.

B. Robot cost of transport

We calculated the total energy input required to tip the
cuboid to calculate its cost of transport (COT), a dimen-
sionless metric often used as a comparison between robot
locomotion efficiency and that of humans. COT has a lower
bound of 0 and an upper bound of infinity; a lower numbers
signifies a more efficient system. It is well-established that
the COT of a human is ≈ 0.2 − 0.4. For comparison, the
COT of the Honda humanoid robot, Assimo, is ≈ 3.2 [16],
[17]. The COT of the cuboid robot can be expressed as:

COT =
Einput
mgd

(1)

where Einput is the input energy required to roll the
system to another face, m is the mass of the system, g is
acceleration due to gravity, and d is the total lateral distance
covered during one step of locomotion, also known as stride
(equal to the length of the edge of the robot, since it is a
cube). The amount of energy required for one stride is that
which moves the cuboid to the point of static instability (for
an ideal cube, this is any value past 45◦ tip). Assuming ideal
gas relations, the total input energy from pneumatic airlines
to the robot is defined by:

Einput = −P∆V (2)

Assuming the rotational axis to be a point at the nearest
corner of the cuboid to the tip, and assuming pure rotation,
we can solve for the relationship between COT and V for
the cuboid which follows the form:

COT = 8.473V − 0.011 (3)

Therefore, the COT for traversing an incline of 4.4◦ is
1.13, where the COT increases to 1.89 at grade of 9◦. It
is also interesting to note the theoretical COT relationship
for an n-sided polygon robot system with similar mass and
radius, r, which can be represented as:

COT =
−P∆V

mgr
√

2− 2cos 2πn

(4)

We can evaluate the the slope of the COT curve when
additional sides are added. Intuitively, the shorter stride
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Fig. 5. The minimum volume input required to traverse sloped terrain of
angle α. The plotted value denotes the sum of volume required for both
balloons combined, where each color denotes a different face of the cuboid.
The cuboid reaches a hard limit at 9◦ where the balloons cannot inflate
enough to induce a tip.

length associated with a polygon with more sides requires
less initial input volume to roll, decreasing the COT.

C. Characterization of topography by shade algorithm

We executed our topography by shade algorithm in two
distinct lighting conditions to ascertain its transfer-ability
to different environmental conditions representative of real-
world scenarios. The first lighting condition was total dark-
ness, which we hypothesized would facilitate the most accu-
rate topographic reconstruction due to minimal external light
noise sources. The second lighting condition was ambient
room lighting. In each lighting condition, three distinctly
shaped objects were assessed. From top to bottom in Figure
6A: a hexagonal nut (18 mm dia.), multiple dice (16 mm
width), and a small screwdriver (20 mm dia.), for a total of
6 independent tests (Figure 6A). As a metric of accuracy, we
observed the reconstruction based on its ability to capture
contours, internal geometry such as holes, and continuous
surfaces and boundaries of the tested objects.

As predicted, the topography by shade algorithm per-
formed most accurately in total darkness, where only di-
rectional, controlled lighting patterns influenced topographic
shading of the deformed pin array. In evaluating the hexag-
onal nut, we note that the right upper-quadrant of its top
surface is less pronounced in ambient lighting. The blob
appearing in the top left of both pictures was found to
be a cluster of stray pins sticking up (without any object
underneath). This finding indicates that the topography by
shade approach is heavily influenced by the quality and
resolution of the mechanical deforming pins. Over the other
two objects, there was no marked differences observed
between the lighting conditions, suggesting our sensing and
algorithmic approach is robust to various types of lighting.

Our second test for robustness sought to evaluate how
well the algorithm projects surface heights from objects of
different geometries. We found that we can detect correct
relative elevations. In Figure 6B, we show a particular
surface plot that was rendered in ambient light. The objects
reconstructed were a single die (16 mm tall) and a flat fish-
shaped cutout (9 mm tall).

We found that the intensity of the internal LED light drasti-
cally influenced correct elevation segmentation; even more so
than harsh ambient lighting. By calibrating the internal LEDs
appropriately, we were able to mitigate effects of internal
reflections on the acrylic from the LEDs. The importance of
internal distribution of light is thus underscored.

D. A robot obstacle course

As a final assessment of the cuboid robot, we constructed
an obstacle course, consisting of sequences of uniquely
shaped objects. Each object– a metal cylindrical rod, several
nuts, a wrench, a 3D-printed L-slot bracket, a small screw-
driver, and a die–was adhered to the flat test bench. The metal
rod and the nut were of the same vertical height. All other
grouped objects were of disparate heights. We commanded
the cuboid to roll across the terrain and reconstruct a topo-
graphic map. We evaluated the reconstructed map based on
ground truth images of the data and prior knowledge of their
relative positions and elevations.

Figure 6C showcases the actual topographic features (left),
the raw camera image of the deformed pin array with man-
ually sketched object contours (middle), and those perceived
by the cuboid robot (right). As a whole, the reconstruc-
tion qualitatively resembles the ground-truth objects fairly
well. Contours are generally correct, and the reconstruction
captures both internal and external geometric features like
the center of the nut and the slot in the L-bracket. Distinct
elevations (illustrated by the different colors of objects in the
reconstruction map) were all identified successfully, save the
second frame from top, in which the algorithm incorrectly
put the small nut and wrench at the same elevation. We sus-
pect this is the case because the objects did not have a large
enough height difference to be appropriately segregated.

Marked deviation from ground-truth topography occurs
about the periphery of the cuboid’s captured image, probably
resulting from glare from nearby LEDs compounded by an
imperfect alignment angle of the cube on top of the terrain.
Additionally, some artifacts present in the reconstruction
were the fault of the pin mechanism in that a few of its
pins got stuck and persisted throughout the rolling duration,
falsely indicating the presence of an object (as in Figure 6A
top). We reiterate that the resolution of the map is restricted
by that of the diameter of the pin heads. A higher resolution
pin array would likely result in higher fidelity maps. We will
leave increased resolution mapping as future work.

IV. CONCLUSIONS

This study presented a cuboid robot which simultaneously
moves across and maps diverse terrain. The robot consists of
commercially available, resilient, inexpensive components,
and low-cost algorithms, in contrast with other mapping
robots that utilize suites of complex sensors. Shortcomings
include: the propensity of the mechanical pins to stay stuck
during traversal, the resolution of the terrain that can be
mapped, the cyclic durability of the latex bladders, and the
robot’s tether, which limits its out-of-lab application. We
intend to address these challenges in a future iteration of

3601



Fig. 6. (A) ambient light test for single hexagonal nut, two die, and one
small screwdriver (B) map constructed from a single die and a fish shaped
cutout, showing our algorithm’s ability to parse relative elevations correctly
(C) example mapping of multiple objects from an obstacle within the same
frame. The algorithm is able to discern unique contours, as well as elevations
of objects in close proximity (different elevations are denoted by color of
shading in the Reconstruction column).

the robot design. Due to its low-cost, we envision that the
presented design could be used to make swarms of robots that
collaboratively construct detailed topographic maps where
they are deployed, or in robotic applications that are subject
to confined spaces with low power resources. The sensing
apparatus and algorithms developed for the cuboid are trans-
ferable to larger scale robotic systems, too. We foresee that
the tactile-based mapping strategy, topography by shade, will
be a logical supplement to optical and range-finding sensors
for next-generation mobile robots, giving them heightened
feature identification and reconstruction capabilities.
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